forked from jedichien/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssd_utils.py
235 lines (211 loc) · 10.3 KB
/
ssd_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""Some utils for SSD."""
import numpy as np
import tensorflow as tf
class BBoxUtility(object):
"""Utility class to do some stuff with bounding boxes and priors.
# Arguments
num_classes: Number of classes including background.
priors: Priors and variances, numpy tensor of shape (num_priors, 8),
priors[i] = [xmin, ymin, xmax, ymax, varxc, varyc, varw, varh].
overlap_threshold: Threshold to assign box to a prior.
nms_thresh: Nms threshold.
top_k: Number of total bboxes to be kept per image after nms step.
# References
https://arxiv.org/abs/1512.02325
"""
# TODO add setter methods for nms_thresh and top_K
def __init__(self, num_classes, priors=None, overlap_threshold=0.5,
nms_thresh=0.45, top_k=400):
self.num_classes = num_classes
self.priors = priors
self.num_priors = 0 if priors is None else len(priors)
self.overlap_threshold = overlap_threshold
self._nms_thresh = nms_thresh
self._top_k = top_k
self.boxes = tf.placeholder(dtype='float32', shape=(None, 4))
self.scores = tf.placeholder(dtype='float32', shape=(None,))
self.nms = tf.image.non_max_suppression(self.boxes, self.scores,
self._top_k,
iou_threshold=self._nms_thresh)
self.sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))
@property
def nms_thresh(self):
return self._nms_thresh
@nms_thresh.setter
def nms_thresh(self, value):
self._nms_thresh = value
self.nms = tf.image.non_max_suppression(self.boxes, self.scores,
self._top_k,
iou_threshold=self._nms_thresh)
@property
def top_k(self):
return self._top_k
@top_k.setter
def top_k(self, value):
self._top_k = value
self.nms = tf.image.non_max_suppression(self.boxes, self.scores,
self._top_k,
iou_threshold=self._nms_thresh)
def iou(self, box):
"""Compute intersection over union for the box with all priors.
# Arguments
box: Box, numpy tensor of shape (4,).
# Return
iou: Intersection over union,
numpy tensor of shape (num_priors).
"""
# compute intersection
inter_upleft = np.maximum(self.priors[:, :2], box[:2])
inter_botright = np.minimum(self.priors[:, 2:4], box[2:])
inter_wh = inter_botright - inter_upleft
inter_wh = np.maximum(inter_wh, 0)
inter = inter_wh[:, 0] * inter_wh[:, 1]
# compute union
area_pred = (box[2] - box[0]) * (box[3] - box[1])
area_gt = (self.priors[:, 2] - self.priors[:, 0])
area_gt *= (self.priors[:, 3] - self.priors[:, 1])
union = area_pred + area_gt - inter
# compute iou
iou = inter / union
return iou
def encode_box(self, box, return_iou=True):
"""Encode box for training, do it only for assigned priors.
# Arguments
box: Box, numpy tensor of shape (4,).
return_iou: Whether to concat iou to encoded values.
# Return
encoded_box: Tensor with encoded box
numpy tensor of shape (num_priors, 4 + int(return_iou)).
"""
iou = self.iou(box)
encoded_box = np.zeros((self.num_priors, 4 + return_iou))
assign_mask = iou > self.overlap_threshold
if not assign_mask.any():
assign_mask[iou.argmax()] = True
if return_iou:
encoded_box[:, -1][assign_mask] = iou[assign_mask]
assigned_priors = self.priors[assign_mask]
box_center = 0.5 * (box[:2] + box[2:])
box_wh = box[2:] - box[:2]
assigned_priors_center = 0.5 * (assigned_priors[:, :2] +
assigned_priors[:, 2:4])
assigned_priors_wh = (assigned_priors[:, 2:4] -
assigned_priors[:, :2])
# we encode variance
encoded_box[:, :2][assign_mask] = box_center - assigned_priors_center
encoded_box[:, :2][assign_mask] /= assigned_priors_wh
encoded_box[:, :2][assign_mask] /= assigned_priors[:, -4:-2]
encoded_box[:, 2:4][assign_mask] = np.log(box_wh /
assigned_priors_wh)
encoded_box[:, 2:4][assign_mask] /= assigned_priors[:, -2:]
return encoded_box.ravel()
def assign_boxes(self, boxes):
"""Assign boxes to priors for training.
# Arguments
boxes: Box, numpy tensor of shape (num_boxes, 4 + num_classes),
num_classes without background.
# Return
assignment: Tensor with assigned boxes,
numpy tensor of shape (num_boxes, 4 + num_classes + 8),
priors in ground truth are fictitious,
assignment[:, -8] has 1 if prior should be penalized
or in other words is assigned to some ground truth box,
assignment[:, -7:] are all 0. See loss for more details.
"""
assignment = np.zeros((self.num_priors, 4 + self.num_classes + 8))
assignment[:, 4] = 1.0
if len(boxes) == 0:
return assignment
encoded_boxes = np.apply_along_axis(self.encode_box, 1, boxes[:, :4])
encoded_boxes = encoded_boxes.reshape(-1, self.num_priors, 5)
best_iou = encoded_boxes[:, :, -1].max(axis=0)
best_iou_idx = encoded_boxes[:, :, -1].argmax(axis=0)
best_iou_mask = best_iou > 0
best_iou_idx = best_iou_idx[best_iou_mask]
assign_num = len(best_iou_idx)
encoded_boxes = encoded_boxes[:, best_iou_mask, :]
assignment[:, :4][best_iou_mask] = encoded_boxes[best_iou_idx,
np.arange(assign_num),
:4]
assignment[:, 4][best_iou_mask] = 0
assignment[:, 5:-8][best_iou_mask] = boxes[best_iou_idx, 4:]
assignment[:, -8][best_iou_mask] = 1
return assignment
def decode_boxes(self, mbox_loc, mbox_priorbox, variances):
"""Convert bboxes from local predictions to shifted priors.
# Arguments
mbox_loc: Numpy array of predicted locations.
mbox_priorbox: Numpy array of prior boxes.
variances: Numpy array of variances.
# Return
decode_bbox: Shifted priors.
"""
prior_width = mbox_priorbox[:, 2] - mbox_priorbox[:, 0]
prior_height = mbox_priorbox[:, 3] - mbox_priorbox[:, 1]
prior_center_x = 0.5 * (mbox_priorbox[:, 2] + mbox_priorbox[:, 0])
prior_center_y = 0.5 * (mbox_priorbox[:, 3] + mbox_priorbox[:, 1])
decode_bbox_center_x = mbox_loc[:, 0] * prior_width * variances[:, 0]
decode_bbox_center_x += prior_center_x
decode_bbox_center_y = mbox_loc[:, 1] * prior_width * variances[:, 1]
decode_bbox_center_y += prior_center_y
decode_bbox_width = np.exp(mbox_loc[:, 2] * variances[:, 2])
decode_bbox_width *= prior_width
decode_bbox_height = np.exp(mbox_loc[:, 3] * variances[:, 3])
decode_bbox_height *= prior_height
decode_bbox_xmin = decode_bbox_center_x - 0.5 * decode_bbox_width
decode_bbox_ymin = decode_bbox_center_y - 0.5 * decode_bbox_height
decode_bbox_xmax = decode_bbox_center_x + 0.5 * decode_bbox_width
decode_bbox_ymax = decode_bbox_center_y + 0.5 * decode_bbox_height
decode_bbox = np.concatenate((decode_bbox_xmin[:, None],
decode_bbox_ymin[:, None],
decode_bbox_xmax[:, None],
decode_bbox_ymax[:, None]), axis=-1)
decode_bbox = np.minimum(np.maximum(decode_bbox, 0.0), 1.0)
return decode_bbox
def detection_out(self, predictions, background_label_id=0, keep_top_k=200,
confidence_threshold=0.01):
"""Do non maximum suppression (nms) on prediction results.
# Arguments
predictions: Numpy array of predicted values.
num_classes: Number of classes for prediction.
background_label_id: Label of background class.
keep_top_k: Number of total bboxes to be kept per image
after nms step.
confidence_threshold: Only consider detections,
whose confidences are larger than a threshold.
# Return
results: List of predictions for every picture. Each prediction is:
[label, confidence, xmin, ymin, xmax, ymax]
"""
mbox_loc = predictions[:, :, :4]
variances = predictions[:, :, -4:]
mbox_priorbox = predictions[:, :, -8:-4]
mbox_conf = predictions[:, :, 4:-8]
results = []
for i in range(len(mbox_loc)):
results.append([])
decode_bbox = self.decode_boxes(mbox_loc[i],
mbox_priorbox[i], variances[i])
for c in range(self.num_classes):
if c == background_label_id:
continue
c_confs = mbox_conf[i, :, c]
c_confs_m = c_confs > confidence_threshold
if len(c_confs[c_confs_m]) > 0:
boxes_to_process = decode_bbox[c_confs_m]
confs_to_process = c_confs[c_confs_m]
feed_dict = {self.boxes: boxes_to_process,
self.scores: confs_to_process}
idx = self.sess.run(self.nms, feed_dict=feed_dict)
good_boxes = boxes_to_process[idx]
confs = confs_to_process[idx][:, None]
labels = c * np.ones((len(idx), 1))
c_pred = np.concatenate((labels, confs, good_boxes),
axis=1)
results[-1].extend(c_pred)
if len(results[-1]) > 0:
results[-1] = np.array(results[-1])
argsort = np.argsort(results[-1][:, 1])[::-1]
results[-1] = results[-1][argsort]
results[-1] = results[-1][:keep_top_k]
return results