forked from low-sky/yt-alma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yt-alma.py
47 lines (38 loc) · 1.44 KB
/
yt-alma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from yt.mods import *
from yt.frontends.stream.api import load_uniform_grid
from astropy.io import fits
#from aplpy.image_util import percentile_function
# Loading fits data
dir = '/srv/astro/erosolo/n253/cubes/newrelease/lines/robust/non_pbcor/'
tracer = 'hcn'
cube= fits.getdata(dir+'ngc253_'+tracer+'_clean_RO.fits')
#ALMA data has a polarization axis. Collapse along it.
cube = cube.sum(axis=0)
#Log transform the data in order to get on a viewable scale
cube = np.log(cube)
# Masking out nan elements
cube[np.isnan(cube)] = np.nanmin(cube)
# Loading data into yt structure
data = dict(Density = cube)
pf = load_uniform_grid(data, cube.shape, 9e16)
# Set the min/max to the data set (in units of log(I))
mi,ma = -5.7,-1.76
# Define a colour transfer function.
tf = ColorTransferFunction((mi, ma))
nLayer = 10
tf.add_layers(nLayer, w=0.005,colormap='gist_rainbow',
alpha = np.logspace(-1.0,0,nLayer))
nStep = 60 # Number of frames in the movie
phiarray = np.linspace(0,2*np.pi,nStep)
count = 0
for phi in phiarray:
count += 1 #Because iterators are hard
ctstring = str(count)
c = [0.51, 0.51, 0.51] # centre of the image
L = [0.00,np.cos(phi),np.sin(phi)] # normal vector
W = (0.25,0.6,0.6)
Nvec = 512
cam = pf.h.camera(c, L, W, (768,Nvec), tf,no_ghost=False,north_vector=[1.0,0,0])
#Define a custom file output here.
image = cam.snapshot("hcnmovie/ngc253_"+ctstring.zfill(3)+".png" % pf, 8.0)