-
Notifications
You must be signed in to change notification settings - Fork 20
/
fiziko.tex
937 lines (802 loc) · 34.7 KB
/
fiziko.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
\documentclass{ltxdoc}
\usepackage{luamplib, listings, bxtexlogo, ccicons}
\everymplib{verbatimtex \leavevmode etex; input fiziko.mp; beginfig(1);}
\everyendmplib{endfig;}
\lstset{
language=MetaPost,
numbers=left,
numberstyle=\tiny,
basicstyle=\scriptsize
}
\author{Sergey Slyusarev}
\title{``fiziko'' v. 0.2.1 package for \METAPOST}
\begin{document}
\maketitle
\begin{abstract}
This document describes a bunch of macros provided by ``fiziko'' library for \METAPOST.
\end{abstract}
\begin{centering}
This document is distributed under CC-BY-SA 4.0 license
\ccbysa
https://github.com/jemmybutton/fiziko
\end{centering}
\section{Introduction}
This \METAPOST\ library was initially written to automate some elements of black and white illustrations for a physics textbook. First and foremost it provides functions to draw things like lines of variable width, shaded spheres and tubes of different kinds, which can be used to produce images of a variety of objects. The library also contains functions to draw some objects constructed from these primitives.
\section{Usage}
Simply include this in the beginning of your \METAPOST\ document:
\begin{lstlisting}
input fiziko.mp
\end{lstlisting}
\section{Global variables}
A few global variables control different aspects of the behavior of the provided macros. Not all possible values are meaningful and some will definitely result in ugly pictures or errors.
\subsection{minStrokeWidth}
This variable controls minimal thickness of lines that are used for shading. Below this value lines are not getting thinner, but become dashed instead, maintaining roughly the same amount of ink per unit length as a thinner line would take. Default value is one fifth of a point. There are several things that depend on this value, so it's convenient to change it using a macro:
\begin{lstlisting}
defineMinStrokeWidth(1/2pt);
\end{lstlisting}
\subsection{lightDirection}
This variable controls direction from which light falls on shaded objects. It's of \texttt{pair} type and is set in radians. Default direction is top-left:
\begin{lstlisting}
lightDirection := (-1/8pi, 1/8pi);
\end{lstlisting}
\subsection{invertedLight}
This variable determines whether the light is inverted. This comes in handy when you need to have your shaded objects white on black. It's of \texttt{boolean} type. Default value is false:
\begin{lstlisting}
draw sphere.s(1cm);
invertedLight := true;
fill ((unitsquare shifted (-1/2,-1/2)) scaled 3/2cm) shifted (3/2cm, 0) withcolor black;
draw sphere.s(1cm) shifted (3/2cm, 0) withcolor white;
\end{lstlisting}
\begin{mplibcode}
draw sphere.c(1cm);
invertedLight := true;
fill ((unitsquare shifted (-1/2,-1/2)) scaled 3/2cm) shifted (3/2cm, 0) withcolor black;
draw sphere.c(1cm) shifted (3/2cm, 0) withcolor white;
invertedLight := false;
\end{mplibcode}
\section{``Lower level'' macros}
Currently, algorithms are quite stupid and will produce decent results only in certain simple circumstances.
\subsection{offsetPath (\emph{path})(\emph{offset function})}
This macro returns offset path (of type \texttt{path}) to a current path with a distance from the original path controlled by some arbitrary function; typically, it is a function of path length, set as either \texttt{offsetPathTime} or \texttt{offsetPathLength}. Former is simply \texttt{time} on current path and changes from 0 to \texttt{length(path)}, and latter changes from 0 to 1 over the path \texttt{arctime} (as a function of \texttt{arclength}).
\begin{lstlisting}
path p, q;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
q := offsetPath(p)(1cm*sin(offsetPathLength*pi));
draw p;
draw q dashed evenly;
\end{lstlisting}
\begin{mplibcode}
path p, q;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
q := offsetPath(p)(1cm*sin(offsetPathLength*pi));
draw p;
draw q dashed evenly;
\end{mplibcode}
\subsection{brush (\emph{path})(\emph{offset function})}
This macro returns a \texttt{picture} of a line of variable width along given path, which is controlled by some arbitrary function, analogous to \texttt{offsetPath}. If line is getting thinner than \texttt{minStrokeWith}, it is drawn dashed.
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw brush (p)(2minStrokeWidth*sin(offsetPathLength*pi));
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw brush (p)(2minStrokeWidth*sin(offsetPathLength*pi));
\end{mplibcode}
\subsection{sphere.c (\emph{diameter})}
This macro returns a \texttt{picture} of a sphere with specified diameter shaded with concentric strokes. Strokes are arranged to fit those of \texttt{tube.l}.
\begin{lstlisting}
for i := 1 step 1 until 6:
draw sphere.c(i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
for i := 1 step 1 until 6:
draw sphere.c(i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{sphere.s (\emph{diameter})}
This macro returns a \texttt{picture} of a sphere with specified diameter shaded with stipples.
\begin{lstlisting}
for i := 1 step 1 until 6:
draw sphere.s(i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
for i := 1 step 1 until 6:
draw sphere.s(i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{sphereLat (\emph{diameter, angle})}
This macro returns a \texttt{picture} of a shaded sphere with specified diameter. Unlike \texttt{sphere.c} macro, this one draws latitudinal strokes around axis rotated at specified \texttt{angle}.
\begin{lstlisting}
for i := 1 step 1 until 6:
draw sphereLat(i*1/4cm, -90 + i*30)
shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
for i := 1 step 1 until 6:
draw sphereLat(i*1/4cm, -90 + i*30)
shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{tube.l (\emph{path})(\emph{offset function})}
This macro returns a \texttt{picture} of a shaded ``tube'' of a variable width along a given path, which is controlled by some arbitrary function, analogous to \texttt{offsetPath}. ``Tube'' drawn by this macro is shaded be longitudal strokes. Once tube is generated, you can call \texttt{tubeOutline} path global variable, if you need one.
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.l (p)(1/2cm*sin(offsetPathLength*pi));
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.l (p)(1/2cm*sin(offsetPathLength*pi));
\end{mplibcode}
\subsection{tube.t (\emph{path})(\emph{offset function})}
This macro returns a \texttt{picture} of a shaded ``tube'' of variable width along given path, which is controlled by some arbitrary function, analogous to \texttt{offsetPath}. ``Tube'' drawn by this macro is shaded be transverse strokes. Once tube is generated, you can call \texttt{tubeOutline} path global variable, if you need one.
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.t (p)(1/2cm*sin(offsetPathLength*pi));
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.t (p)(1/2cm*sin(offsetPathLength*pi));
\end{mplibcode}
\subsection{tube.s (\emph{path})(\emph{offset function})}
This macro returns a \texttt{picture} of a shaded ``tube'' of variable width along given path, which is controlled by some arbitrary function, analogous to \texttt{offsetPath}. ``Tube'' drawn by this macro is shaded with stipples. Once tube is generated, you can call \texttt{tubeOutline} path global variable, if you need one.
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.s (p)(1/2cm*sin(offsetPathLength*pi));
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw tube.s (p)(1/2cm*sin(offsetPathLength*pi));
\end{mplibcode}
\subsection{tube.e (\emph{path})(\emph{offset function})}
This macro returns the outline of a tube as a path.
\section{``Higher level'' macros}
Using macros described in the previous section it is possible to construct more complex images. Macros for drawing some often used images are present in this package.
\subsection{eye (\emph{angle})}
This macro returns a \texttt{picture} of an eye pointed at the direction \texttt{angle} (in degrees). Eye size is controlled by a global variable \texttt{eyescale}, which has default value of \texttt{eyescale := 1/2cm;}.
\begin{lstlisting}
save eyescale;
for i := 1 step 1 until 6:
eyescale := 1/6cm*i;
draw eye(i*60) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
save eyescale;
for i := 1 step 1 until 6:
eyescale := 1/6cm*i;
draw eye(i*60) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{pulley (\emph{diameter, angle})}
This macro returns a \texttt{picture} of a pulley with specified \texttt{diameter} and its support pointed at the direction \texttt{angle} (in degrees). Note that pulley's support protrudes from its center by \texttt{pulleySupportSize*diameter} and by default \texttt{pulleySupportSize} = 3/2. Once pulley is generated, you can call \texttt{pulleyOutline} path global variable, if you need one.
\begin{lstlisting}
draw (-1/8cm, 0)--(12cm, 0);
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw image(
draw pulley(2r, 0) shifted (0, -4/3r);
draw (r, -4/3r) -- (r, -2cm);
drawarrow (-r, -4/3r) -- (-r, -2cm);
) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\noindent\begin{mplibcode}
draw (-1/8cm, 0)--(12cm, 0);
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw image(
draw pulley(2r, 0) shifted (0, -4/3r);
draw (r, -4/3r) -- (r, -2cm);
drawarrow (-r, -4/3r) -- (-r, -2cm);
) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{pulleyWheel (\emph{diameter})}
This macro returns a \texttt{picture} of a pulley wheel with specified \texttt{diameter}.
\begin{lstlisting}
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw image(
draw pulleyWheel(2r);
draw (r, 0) -- (r, 1cm);
drawarrow (-r, 0) -- (-r, 1cm);
) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw image(
draw pulleyWheel(2r);
draw (r, 0) -- (r, 1cm);
drawarrow (-r, 0) -- (-r, 1cm);
) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{wheel (\emph{diameter, angle})}
This macro returns a \texttt{picture} of a wheel with specified \texttt{diameter} and its support pointed at the direction \texttt{angle} (in degrees).
\begin{lstlisting}
draw (-1/8cm, 0)--(12cm, 0);
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw wheel(2r, 0) shifted (0, -r) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\noindent\begin{mplibcode}
draw (-1/8cm, 0)--(12cm, 0);
for i := 1 step 1 until 6:
r := 1/7cm*i;
draw wheel(2r, 0) shifted (0, -r) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{weight.s (\emph{height})}
This macro returns a \texttt{picture} of a weight of a specific \texttt{height} that is standing on the point \texttt{(0, 0)}.
\begin{lstlisting}
for i := 1 step 1 until 6:
draw weight.s(1/4cm + i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
draw (-1/8cm, 0)--(12cm, 0);
\end{lstlisting}
\noindent\begin{mplibcode}
for i := 1 step 1 until 6:
draw weight.s(1/4cm + i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
draw (-1/8cm, 0)--(12cm, 0);
\end{mplibcode}
\subsection{weight.h (\emph{height})}
This macro returns a \texttt{picture} of a weight of a specific \texttt{height} that is is hanging from the point \texttt{(0, 0)}.
\begin{lstlisting}
for i := 1 step 1 until 6:
draw weight.h(1/4cm + i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
draw (12cm, 0)--(-1/8cm, 0);
\end{lstlisting}
\noindent\begin{mplibcode}
for i := 1 step 1 until 6:
draw weight.h(1/4cm + i*1/4cm) shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
draw (12cm, 0)--(-1/8cm, 0);
\end{mplibcode}
\subsection{spring (\emph{point a, point b, number of steps})}
This macro returns a \texttt{picture} of a spring stretched between points \texttt{a} and \texttt{b} (of type \texttt{pair}), with specified \texttt{number of steps}. Spring width is controlled by global variable \texttt{springwidth} with the default value \texttt{springwidth := 1/8cm;}.
\begin{lstlisting}
pair a, b;
a := (0, 0);
for i := 1 step 1 until 6:
springwidth := 1/16cm + i*1/48cm;
b := (i*1/3cm, - i*1/5cm);
draw spring (a, b, 10) shifted (2/5cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
pair a, b;
a := (0, 0);
for i := 1 step 1 until 6:
springwidth := 1/16cm + i*1/48cm;
b := (i*1/3cm, - i*1/5cm);
draw spring (a, b, 10) shifted (2/5cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{solidSurface (\emph{path})}
This macro returns a \texttt{picture} of a solid surface on the right side of a given \texttt{path}.
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw solidSurface(p);
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw solidSurface(p);
\end{mplibcode}
\subsection{solid (\emph{path, angle, type})}
Fills given \texttt{path} with strokes of specific type at a given \texttt{angle}. \texttt{type} can be 0 (``solid'' strokes) and 1 (``glass'' strokes).
\begin{lstlisting}
path p[];
p1 := unitsquare scaled 2cm;
p2 := p1 shifted (4cm, 0);
draw solid(p1, 45, 0);
draw solid(p2, -45, 1);
\end{lstlisting}
\begin{mplibcode}
path p[];
p1 := unitsquare scaled 2cm;
p2 := p1 shifted (4cm, 0);
draw solid(p1, 45, 0);
draw solid(p2, -45, 1);
\end{mplibcode}
\subsection{woodBlock (\emph{width, height})}
Returns a \texttt{picture} of a rectangular block of wood with its bottom-left corner in the origin.
\begin{lstlisting}
draw woodBlock(10cm, 1/2cm);
\end{lstlisting}
\begin{mplibcode}
draw woodBlock(10cm, 1/2cm);
\end{mplibcode}
\subsection{woodenThing (\emph{path, angle})}
Returns a \texttt{picture} of a wood texture at a given \texttt{angle} fitted into a given \texttt{path}.
\begin{lstlisting}
path p, q;
p := dir(-60) scaled 1/2 -- dir(90) scaled 2/3 -- dir (-120) scaled 3/5 -- cycle;
for i := 1 step 1 until 6:
q := (p scaled 3/2cm) rotated (i*60);
draw woodenThing (q, i*60) shifted (2cm*i, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
path p, q;
p := dir(-60) scaled 1/2 -- dir(90) scaled 2/3 -- dir (-120) scaled 3/5 -- cycle;
for i := 1 step 1 until 6:
q := (p scaled 3/2cm) rotated (i*60);
draw woodenThing (q, i*60) shifted (2cm*i, 0);
endfor;
\end{mplibcode}
\subsection{woodenSurface (\emph{path})}
Returns a \texttt{picture} similar to that of a solid surface on the right side of a given \texttt{path}, but with wood texture .
\begin{lstlisting}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw woodenSurface(p);
\end{lstlisting}
\begin{mplibcode}
path p;
p := (0,0){dir(30)}..(5cm, 0)..{dir(30)}(10cm, 0);
draw woodenSurface(p);
\end{mplibcode}
\subsection{globe (\emph{radius, longitude, latitude})}
This macro returns a \texttt{picture} of the globe of specified \texttt{radius} centered at specific \texttt{longitude} and \texttt{latitude};
\begin{lstlisting}
for i := 1 step 1 until 6:
draw globe(i*1/4cm, i*60, -90 + i*30)
shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{lstlisting}
\begin{mplibcode}
for i := 1 step 1 until 6:
draw globe(i*1/4cm, i*60, -90 + i*30)
shifted (1/2cm*(i*(i+1))/2, 0);
endfor;
\end{mplibcode}
\subsection{Knots}
There are two macros to handle knot drawing: \texttt{addStrandToKnot} and \texttt{knot\-From\-Strands}. Currently the algorithm is not especially stable.
% \subsubsection{initKnot (\emph{knotName})}
% This macro creates an empty knot with no strands named \texttt{knotName} and returns nothing. Useful if a knot is redefined with the same name repeatedly.
\subsubsection{addStrandToKnot (\emph{knotName}) (\emph{path, ropeWidth, ropeType, intersectionOrder})}
This macro adds a strand to knot named \texttt{knotName} and returns nothing. Strand follows the given \texttt{path} and has a given \texttt{ropeWidth}. \texttt{ropeType} can be \texttt{"l"}, \texttt{"t"} (as in \texttt{tube.l} and \texttt{tube.t}) or \texttt{"e"} (for an unshaded strand). \texttt{intersectionOrder} is a string of comma separated numbers which represent a ``layer'' to which intersections along the strand go.
\subsubsection{knotFromStrands (\emph{knotName})}
This macro returns a picture of a knot with a given \texttt{knotName}.
\begin{lstlisting}
path p[];
p1 := (dir(90)*4/3cm) {dir(0)} .. tension 3/2
.. (dir(90 + 120)*4/3cm){dir(90 + 30)} .. tension 3/2
.. (dir(90 - 120)*4/3cm){dir(-90 - 30)} .. tension 3/2
.. cycle;
p2 := (fullcircle scaled 3cm) shifted (0, -3/2cm);
p3 := (fullcircle scaled 4cm);
addStrandToKnot (theknot) (p1 shifted (4cm, -4cm), 1/5cm, "l",
"-1,1,-1,1,-1,1,-1,1,-1");
addStrandToKnot (theknot) (p2 shifted (4cm, -4cm), 1/6cm, "s",
"");
addStrandToKnot (theknot) (p3 shifted (4cm, -4cm), 1/7cm, "e",
"-1,1");
draw knotFromStrands (theknot);
\end{lstlisting}
\begin{mplibcode}
path p[];
p1 := (dir(90)*4/3cm) {dir(0)} .. tension 3/2
.. (dir(90 + 120)*4/3cm){dir(90 + 30)} .. tension 3/2
.. (dir(90 - 120)*4/3cm){dir(-90 - 30)} .. tension 3/2
.. cycle;
p2 := (fullcircle scaled 3cm) shifted (0, -3/2cm);
p3 := (fullcircle scaled 4cm);
addStrandToKnot (theknot) (p1 shifted (4cm, -4cm), 1/5cm, "l",
"-1,1,-1,1,-1,1,-1,1,-1");
addStrandToKnot (theknot) (p2 shifted (4cm, -4cm), 1/6cm, "s",
"");
addStrandToKnot (theknot) (p3 shifted (4cm, -4cm), 1/7cm, "e",
"-1,1");
draw knotFromStrands (theknot);
\end{mplibcode}
\subsection{Other 3D contraptions}
Some macros can be used to shade 3D polygons. Currently only flat surfaces re supported
\subsubsection{flatSurface\emph{\#@}(\emph{surface outline path, normal vector, hatch angle})}
This macro returns a \texttt{picture} of a flat surface with the specified \texttt{surface outline path} with the given \texttt{normal vector}, illuminated from the direction determined by \texttt{lightDirection} and with hatches aligned at the andle \texttt{hatch angle}. If \texttt{\#@} is \texttt{".hatches"} then the surface is shaded with hatches, if it's \texttt{".stipples"}, then the surface is shaded with stipples.
\begin{mplibcode}
path p[];
p1 := unitsquare xscaled 1cm yscaled 2cm;
p2 := p1 shifted (1cm, 0);
draw flatSurface.hatches(p1, (-1,0,1), 45);
draw flatSurface.hatches(p2, (1,0,1), 45);
draw p1; draw p2;
\end{mplibcode}
\section{Other macros}
Some macros that are not directly related to drawing are listed below
\subsection{refractionPath (\emph{initial ray, shape, refraction coefficient})}
This macro returns a \texttt{path} that represent refraction of some \texttt{ray} (any variable of type \texttt{path}, point next to last in a given path is considered a source of a ``ray'', and last point determines its direction) through some \texttt{shape} with given \texttt{refraction coefficient}. When appropriate, the ``ray'' is fully internally reflected.
Setting \texttt{refraction coefficient} to 0 results in reflection instead of refraction in all cases.
\begin{lstlisting}
path r, p;
p := fullcircle scaled 2.1cm;
draw p;
for i:= 1cm step -1/4cm until -1cm:
r := (-4cm, i) -- (-1cm, i);
draw refractionPath(r, p, 1.5);
endfor;
\end{lstlisting}
\begin{mplibcode}
path r, p;
p := fullcircle scaled 2.1cm;
draw p;
for i:= 1cm step -1/4cm until -1cm:
r := (-4cm, i) -- (-1cm, i);
draw refractionPath(r, p, 1.5);
endfor;
\end{mplibcode}
\subsection{lens (\emph{(left radius, right radius), thickness, diameter, units})}
This macro returns a \texttt{path} that represent a section of a lens with given radii of curvature (positive value for convex, negative --- for concave), thickness (i. e. distance benween sides' centers) and diameter (i. e. height) in given arbitrary units.
\begin{lstlisting}
draw lens((5, 10), 1/2, 2, cm);
draw lens((-10, -5), 1/4, 2, cm) shifted (2cm, 0);
draw lens((infinity, 7), 1/4, 2, cm) shifted (4cm, 0);
\end{lstlisting}
\begin{mplibcode}
draw lens((5, 10), 1/2, 2, cm);
draw lens((-10, -5), 1/4, 2, cm) shifted (2cm, 0);
draw lens((infinity, 7), 1/4, 2, cm) shifted (4cm, 0);
\end{mplibcode}
\section{Auxilary macros}
Some macros that not related to physical problems at all are listed below.
\subsection{\emph{picture} maskedWith \emph{path}}
This macro masks a part of a \texttt{picture} with closed \texttt{path}. In fact this is inversion of \METAPOST's built-in \texttt{clip} but, in contrast to the latter, it does not modify original image. Note that it requires that counter-clockwise \texttt{path} to work properly.
\subsection{\emph{path} firstIntersectionTimes \emph{path}}
This macro is similar to \METAPOST's \texttt{intersectiontimes} but it returns intersection times with smallest time on first path.
\subsection{pathSubdivide \emph{path, n}}
This macro returns original \texttt{path} with \texttt{n}-times more points.
\subsection{drawmidarrow (\emph{path})}
Draws \texttt{path} with arrows in the middles of segments with length no less than \texttt{midArrowLimit} (another global variable, 1cm by default).
\subsection{markAngle (\emph{point a, point o, point b})(\emph{text})}
This macro marks an angle \texttt{aob} (counter-clockwise) with some \texttt{text}
\begin{lstlisting}
pair a, o, b;
for i:= 30 step 60 until 390:
o := (10cm*(i/360), 0);
a := dir(i/2)*4/3cm shifted o;
b := dir(i)*4/3cm shifted o;
draw (a--o--b);
markAngle(a, o, b)(btex $\alpha$ etex);
endfor;
\end{lstlisting}
\begin{mplibcode}
pair a, o, b;
for i:= 30 step 60 until 390:
o := (10cm*(i/360), 0);
a := dir(i/2)*4/3cm shifted o;
b := dir(i)*4/3cm shifted o;
draw (a--o--b);
markAngle(a, o, b)(btex $\alpha$ etex);
endfor;
\end{mplibcode}
\section{Some examples}
\subsection{Gregory-Maksutov type telescope}
Lines 3--11 define parameters of lenses and mirrors\footnote{Taken from here http://www.google.ru/patents/US2701983}. Lines 12--16 generate lenses. On line 20 shape of prism is defined. Line 22 cuts part of the rear mirror. Line 26 describes mirror part of the front lens. On lines 31--33 all the glass parts are drawn. On lines 34--36 all the mirror ones. On lines 39--44 rays are traced through all system in order specified in loop on line 41. Lines 49--56 are about the telescope frame.
\begin{lstlisting}
path p[], q[], axis[], f[]; pair o;
u := 6mm;
r1 := -36.979; r2 := -r1; t1 := 0.7; n1 := 1.517; d1 := 5;
l1 := 8.182;
r3 := -11.657; r4 := r3; t2 := 0.2; n2 := n1; d2 := 3/2;
l2 := 0.4;
r5 := -30.433; r6 := 9.598; t3 := 0.39; n3 := 1.621; d3 := d2;
l3 := 0.828;
r7 := -35.512; r8 := infinity; t4 := 0.7; n4 := 0; d4 := d1;
l4 := 5.272;
ll0 := 0;
for i := 1 upto 4:
ll[i] := ll[i-1] + t[i] + l[i];
p[i] := lens ((r[i*2 - 1], r[i*2]), t[i], d[i], u)
shifted (ll[i-1]*u, 0);
endfor;
axis1 := (0, 0) -- (ll4*u, 0);
axis2 := reverse(axis1);
ll5 := ll4 - 1/2l4;
p5 := ((-1,-1) -- (1,1) -- (-1,1) -- cycle)
scaled (1/2d2*u) shifted (ll5*u, 0);
p6 := (subpath
(ypart((axis1 shifted (0, 1/2d2*u)) firstIntersectionTimes p4),
ypart((axis2 shifted (0, 1/2d2*u)) firstIntersectionTimes p4))
of p4) -- cycle;
p7 := (subpath
(ypart((axis2 shifted (0, 3/4d2*u)) firstIntersectionTimes p1),
ypart((axis2 shifted (0, -3/4d2*u)) firstIntersectionTimes p1))
of p1);
p7 := p7 -- (reverse(p7) shifted ((-1/3t1)*u, 0)) -- cycle;
for i := 1, 2, 3, 5:
draw p[i] withpen thickpen; draw solid (p[i], 45, 1);
endfor;
draw solid (p7, -45, 0);
draw p6 withpen thickpen; draw solid (p6, -45, 0);
draw p6 yscaled -1 withpen thickpen;
draw solid (p6 yscaled -1, -45, 0);
n7 := 0; n5 := n1;
for i := 0, 1:
q[i] := (-3/2u, -2u + i*4u) -- (16u, -2u + i*4u);
for j = 1, 4, 7, 2, 3, 5:
q[i] := refractionPath(q[i], p[j], n[j]);
endfor;
endfor;
o := whatever[point length(q0) of q0, point length(q0)-1 of q0]
= whatever[point length(q1) of q1, point length(q1)-1 of q1];
for i := 0, 1: drawmidarrow (q[i] -- o) withpen thinpen; endfor;
draw eye(-91) shifted o shifted (0, u);
f1 := (-1/4u, 1/2d1*u) -- ((ll3 + t4)*u, 1/2d1*u)
-- ((ll3 + t4)*u, 1/2d2*u);
f2 := (ll1*u - 1/8u, 1/2d2*u) -- (ll5*u - 1/2d2*u, 1/2d2*u)
-- (ll5*u - 1/2d2*u, ypart(o));
f3 := (ll1*u - 1/8u, -1/2d2*u) -- (ll5*u + 1/2d2*u, -1/2d2*u)
-- (ll5*u + 1/2d2*u, ypart(o));
draw f1 withpen fatpen; draw f1 yscaled -1 withpen fatpen;
draw f2 withpen fatpen; draw f3 withpen fatpen;
\end{lstlisting}
\begin{mplibcode}
path p[], q[], axis[], f[]; pair o;
u := 6mm;
r1 := -36.979; r2 := -r1; t1 := 0.7; n1 := 1.517; d1 := 5;
l1 := 8.182;
r3 := -11.657; r4 := r3; t2 := 0.2; n2 := n1; d2 := 3/2;
l2 := 0.4;
r5 := -30.433; r6 := 9.598; t3 := 0.39; n3 := 1.621; d3 := d2;
l3 := 0.828;
r7 := -35.512; r8 := infinity; t4 := 0.7; n4 := 0; d4 := d1;
l4 := 5.272;
ll0 := 0;
for i := 1 upto 4:
ll[i] := ll[i-1] + t[i] + l[i];
p[i] := lens ((r[i*2 - 1], r[i*2]), t[i], d[i], u)
shifted (ll[i-1]*u, 0);
endfor;
axis1 := (0, 0) -- (ll4*u, 0);
axis2 := reverse(axis1);
ll5 := ll4 - 1/2l4;
p5 := ((-1,-1) -- (1,1) -- (-1,1) -- cycle)
scaled (1/2d2*u) shifted (ll5*u, 0);
p6 := (subpath
(ypart((axis1 shifted (0, 1/2d2*u)) firstIntersectionTimes p4),
ypart((axis2 shifted (0, 1/2d2*u)) firstIntersectionTimes p4))
of p4) -- cycle;
p7 := (subpath
(ypart((axis2 shifted (0, 3/4d2*u)) firstIntersectionTimes p1),
ypart((axis2 shifted (0, -3/4d2*u)) firstIntersectionTimes p1))
of p1);
p7 := p7 -- (reverse(p7) shifted ((-1/3t1)*u, 0)) -- cycle;
for i := 1, 2, 3, 5:
draw p[i] withpen thickpen; draw solid (p[i], 45, 1);
endfor;
draw solid (p7, -45, 0);
draw p6 withpen thickpen; draw solid (p6, -45, 0);
draw p6 yscaled -1 withpen thickpen;
draw solid (p6 yscaled -1, -45, 0);
n7 := 0; n5 := n1;
for i := 0, 1:
q[i] := (-3/2u, -2u + i*4u) -- (16u, -2u + i*4u);
for j = 1, 4, 7, 2, 3, 5:
q[i] := refractionPath(q[i], p[j], n[j]);
endfor;
endfor;
o := whatever[point length(q0) of q0, point length(q0)-1 of q0]
= whatever[point length(q1) of q1, point length(q1)-1 of q1];
for i := 0, 1: drawmidarrow (q[i] -- o) withpen thinpen; endfor;
draw eye(-91) shifted o shifted (0, u);
f1 := (-1/4u, 1/2d1*u) -- ((ll3 + t4)*u, 1/2d1*u)
-- ((ll3 + t4)*u, 1/2d2*u);
f2 := (ll1*u - 1/8u, 1/2d2*u) -- (ll5*u - 1/2d2*u, 1/2d2*u)
-- (ll5*u - 1/2d2*u, ypart(o));
f3 := (ll1*u - 1/8u, -1/2d2*u) -- (ll5*u + 1/2d2*u, -1/2d2*u)
-- (ll5*u + 1/2d2*u, ypart(o));
draw f1 withpen fatpen; draw f1 yscaled -1 withpen fatpen;
draw f2 withpen fatpen; draw f3 withpen fatpen;
\end{mplibcode}
\subsection{L'H\^{o}pital's Pulley Problem}
Line 3 describe initial setup. Line 4 is problem's solution. Lines 8--11 set all the points where they belong. Lines 12--16 are needed to decide where to put the pulley.
\begin{lstlisting}
pair p[], o[];
numeric a, d[], l[], x[], y[];
l0 := 6; l1 := 4; l2 := 4;
x1 := (l1**2 + abs(l1)*((sqrt(8)*l0)++l1))/4l0;
y1 := l1+-+x1;
y2 := l2 - ((l0-x1)++y1);
d1 := 2/3cm; d2 := 4/3cm; d3 := 5/6d1;
p1 := (0, 0);
p2 := (l0*cm, 0);
p3 := (x1*cm, -y1*cm);
p4 := p3 shifted (0, -y2*cm);
o1 := (unitvector(p4-p3) rotated 90 scaled 1/2d3);
o2 := (unitvector(p3-p2) rotated 90 scaled 1/2d3);
p5 := whatever [p3 shifted o1, p4 shifted o1]
= whatever [p3 shifted o2, p2 shifted o2];
a := angle(p1-p3);
draw solidSurface(11/10[p1,p2] -- 11/10[p2, p1]);
draw pulley (d1, a - 90) shifted p5;
draw image(
draw p1 -- p3 -- p2 withpen thickpen;
draw p3 -- p4 withpen thickpen;
) maskedWith (pulleyOutline shifted p5);
draw sphere.c(d2) shifted p4 shifted (0, -1/2d2);
dotlabel.llft(btex $A$ etex, p1);
dotlabel.lrt(btex $B$ etex, p2);
dotlabel.ulft(btex $C$ etex, p4);
label.llft(btex $l$ etex, 1/2[p1, p3]);
markAngle(p3, p1, p2)(btex $\alpha$ etex);
\end{lstlisting}
\begin{mplibcode}
pair p[], o[];
numeric a, d[], l[], x[], y[];
l0 := 6; l1 := 4; l2 := 4;
x1 := (l1**2 + abs(l1)*((sqrt(8)*l0)++l1))/4l0;
y1 := l1+-+x1;
y2 := l2 - ((l0-x1)++y1);
d1 := 2/3cm; d2 := 4/3cm; d3 := 5/6d1;
p1 := (0, 0);
p2 := (l0*cm, 0);
p3 := (x1*cm, -y1*cm);
p4 := p3 shifted (0, -y2*cm);
o1 := (unitvector(p4-p3) rotated 90 scaled 1/2d3);
o2 := (unitvector(p3-p2) rotated 90 scaled 1/2d3);
p5 := whatever [p3 shifted o1, p4 shifted o1]
= whatever [p3 shifted o2, p2 shifted o2];
a := angle(p1-p3);
draw solidSurface(11/10[p1,p2] -- 11/10[p2, p1]);
draw pulley (d1, a - 90) shifted p5;
draw image(
draw p1 -- p3 -- p2 withpen thickpen;
draw p3 -- p4 withpen thickpen;
) maskedWith (pulleyOutline shifted p5);
draw sphere.c(d2) shifted p4 shifted (0, -1/2d2);
dotlabel.llft(btex $A$ etex, p1);
dotlabel.lrt(btex $B$ etex, p2);
dotlabel.ulft(btex $C$ etex, p4);
label.llft(btex $l$ etex, 1/2[p1, p3]);
markAngle(p3, p1, p2)(btex $\alpha$ etex);
\end{mplibcode}
\subsection{Hooke's law}
\begin{lstlisting}
numeric l[],d, h;
pair p[], q[];
l0 := 3/2cm; l1 := 1cm;
d := 1cm; h := 7/8cm;
p1 := (0, 0); p2 := (0, -l0);
p3 := (d, 0); p4 := (d, -l0-l1);
p5 := (2d, 0); p6 := (2d, -l0-2l1); p7 := (2d, -l0-2l1-h);
draw solidSurface((2d + 1/2cm, 0)--(-1/2cm, 0));
draw spring(p1, p2, 20);
draw spring(p3, p4, 20);
draw weight.h(h) shifted p4;
draw spring(p5, p6, 20);
draw weight.h(h) shifted p6;
draw weight.h(h) shifted p7;
q1 := (0, ypart(p2));
q2 := (0, ypart(p4));
q3 := (0, ypart(p6));
draw p2 -- q1 withpen thinpen;
draw p4 -- q2 withpen thinpen;
draw p6 -- q3 withpen thinpen;
drawdblarrow q1--q2 withpen thinpen;
drawdblarrow q2--q3 withpen thinpen;
label.lft (btex $x$ etex, 1/2[q1, q2]);
label.lft (btex $x$ etex, 1/2[q2, q3]);
\end{lstlisting}
\begin{mplibcode}
numeric l[],d, h;
pair p[], q[];
l0 := 3/2cm; l1 := 1cm;
d := 1cm; h := 7/8cm;
p1 := (0, 0); p2 := (0, -l0);
p3 := (d, 0); p4 := (d, -l0-l1);
p5 := (2d, 0); p6 := (2d, -l0-2l1); p7 := (2d, -l0-2l1-h);
draw solidSurface((2d + 1/2cm, 0)--(-1/2cm, 0));
draw spring(p1, p2, 20);
draw spring(p3, p4, 20);
draw weight.h(h) shifted p4;
draw spring(p5, p6, 20);
draw weight.h(h) shifted p6;
draw weight.h(h) shifted p7;
q1 := (0, ypart(p2));
q2 := (0, ypart(p4));
q3 := (0, ypart(p6));
draw p2 -- q1 withpen thinpen;
draw p4 -- q2 withpen thinpen;
draw p6 -- q3 withpen thinpen;
drawdblarrow q1--q2 withpen thinpen;
drawdblarrow q2--q3 withpen thinpen;
label.lft (btex $x$ etex, 1/2[q1, q2]);
label.lft (btex $x$ etex, 1/2[q2, q3]);
\end{mplibcode}
\subsection{Weight on a cart}
\begin{lstlisting}
numeric l, w, r, h;
l := 4cm;
w := 1/4cm;
r := 2/3cm;
h := 1cm;
draw solidSurface((-1/5l, 0) -- (6/5l, 0));
draw woodBlock (l, w) shifted (0, r);
draw wheel (r, 0) shifted (r, 1/2r);
draw wheel (r, 0) shifted (l-r, 1/2r);
draw weight.s(h) shifted (1/2l, r + w);
\end{lstlisting}
\begin{mplibcode}
numeric l, w, r, h;
l := 4cm;
w := 1/4cm;
r := 2/3cm;
h := 1cm;
draw solidSurface((-1/5l, 0) -- (6/5l, 0));
draw woodBlock (l, w) shifted (0, r);
draw wheel (r, 0) shifted (r, 1/2r);
draw wheel (r, 0) shifted (l-r, 1/2r);
draw weight.s(h) shifted (1/2l, r + w);
\end{mplibcode}
\subsection{Some knots}
\begin{lstlisting}
path p[];
p1 := (dir(90)*4/3cm) {dir(0)} .. tension 3/2
.. (dir(90 + 120)*4/3cm){dir(90 + 30)} .. tension 3/2
.. (dir(90 - 120)*4/3cm){dir(-90 - 30)} .. tension 3/2
.. cycle;
p1 := p1 scaled 6/5;
addStrandToKnot (primeOne) (p1, 1/4cm, "l", "1, -1, 1");
draw knotFromStrands (primeOne);
p2 := (0, 2cm) .. (1/2cm, 3/2cm) .. (-1/2cm, 0)
.. (1/2cm, -2/3cm) .. (4/3cm, 0) .. (0, 17/12cm)
.. (-4/3cm, 0) .. (-1/2cm, -2/3cm) .. (1/2cm, 0)
.. (-1/2cm, 3/2cm) .. cycle;
p2 := p2 scaled 6/5;
addStrandToKnot (primeTwo) (p2, 1/4cm, "l", "1, -1, 1, -1, 1");
draw knotFromStrands (primeTwo) shifted (4cm, 0);
p3 := (dir(0)*3/2cm) .. (dir(1*72)*2/3cm)
.. (dir(2*72)*3/2cm) .. (dir(3*72)*2/3cm)
.. (dir(4*72)*3/2cm) .. (dir(0)*2/3cm)
.. (dir(1*72)*3/2cm) .. (dir(2*72)*2/3cm)
.. (dir(3*72)*3/2cm) .. (dir(4*72)*2/3cm)
.. cycle;
p3 := (p3 rotated (72/4)) scaled 6/5;
addStrandToKnot (primeThree) (p3, 1/4cm, "l", "-1, 1, -1, 1, -1");
draw knotFromStrands (primeThree) shifted (8cm, 0);
\end{lstlisting}
\begin{mplibcode}
path p[];
p1 := (dir(90)*4/3cm) {dir(0)} .. tension 3/2
.. (dir(90 + 120)*4/3cm){dir(90 + 30)} .. tension 3/2
.. (dir(90 - 120)*4/3cm){dir(-90 - 30)} .. tension 3/2
.. cycle;
p1 := p1 scaled 6/5;
addStrandToKnot (primeOne) (p1, 1/4cm, "l", "1, -1, 1");
draw knotFromStrands (primeOne);
p2 := (0, 2cm) .. (1/2cm, 3/2cm) .. (-1/2cm, 0)
.. (1/2cm, -2/3cm) .. (4/3cm, 0) .. (0, 17/12cm)
.. (-4/3cm, 0) .. (-1/2cm, -2/3cm) .. (1/2cm, 0)
.. (-1/2cm, 3/2cm) .. cycle;
p2 := p2 scaled 6/5;
addStrandToKnot (primeTwo) (p2, 1/4cm, "s", "1, -1, 1, -1, 1");
draw knotFromStrands (primeTwo) shifted (4cm, -2cm);
p3 := (dir(0)*3/2cm) .. (dir(1*72)*2/3cm)
.. (dir(2*72)*3/2cm) .. (dir(3*72)*2/3cm)
.. (dir(4*72)*3/2cm) .. (dir(0)*2/3cm)
.. (dir(1*72)*3/2cm) .. (dir(2*72)*2/3cm)
.. (dir(3*72)*3/2cm) .. (dir(4*72)*2/3cm)
.. cycle;
p3 := (p3 rotated (72/4)) scaled 6/5;
addStrandToKnot (primeThree) (p3, 1/4cm, "e", "-1, 1, -1, 1, -1");
draw knotFromStrands (primeThree) shifted (8cm, 0);
\end{mplibcode}
\end{document}