diff --git a/GCN Files/RBC_two_household.gcn b/GCN Files/RBC_two_household.gcn
new file mode 100644
index 0000000..51bac29
--- /dev/null
+++ b/GCN Files/RBC_two_household.gcn
@@ -0,0 +1,177 @@
+assumptions
+{
+ positive
+ {
+ Y[], K[], C_NR[], C_R[],
+ w[], r[], mc_L[],
+ L[], L_NR[], L_R[],
+ TFP[],
+ alpha, alpha_L, beta, sigma_C, sigma_L, delta;
+ };
+};
+
+tryreduce
+{
+ U_NR[], U_R[], TC[];
+};
+
+block STEADY_STATE
+{
+ definitions
+ {
+ f1[ss] = (r[ss] / (r[ss] - alpha * delta));
+ f2[ss] = (alpha_L * (1 - alpha_L) * (1 - alpha)) ^ (-sigma_L / sigma_C);
+ f3[ss] = alpha_L ^ (sigma_L / sigma_C) +
+ (1 - alpha_L) ^ (sigma_L / sigma_C);
+
+ };
+ identities
+ {
+ TFP[ss] = 1.0;
+ shock_beta_R[ss] = 1.0;
+
+ r[ss] = 1 / beta - (1 - delta);
+ w[ss] = (1 - alpha) * alpha_L ^ alpha_L * (1 - alpha_L) ^ (1 - alpha_L) *
+ (r[ss] / alpha) ^ (alpha / (alpha - 1));
+ mc_L[ss] = w[ss] / alpha_L ^ alpha_L / (1 - alpha_L) ^ (1 - alpha_L);
+ Y[ss] = (f1[ss] * f2[ss] * f3[ss] * w[ss] ^ ((1 + sigma_L) / sigma_C)) ^
+ (sigma_C / (sigma_L + sigma_C));
+
+ L[ss] = (1 - alpha) * Y[ss] / mc_L[ss];
+
+ L_R[ss] = alpha_L * L[ss] * mc_L[ss] / w[ss];
+ L_NR[ss] = (1 - alpha_L) * L[ss] * mc_L[ss] / w[ss];
+
+ C_R[ss] = w[ss] ^ (1/sigma_C) * L_R[ss] ^ (-sigma_L / sigma_C);
+ C_NR[ss] = w[ss] ^ (1/sigma_C) * L_NR[ss] ^ (-sigma_L / sigma_C);
+
+ K[ss] = alpha * Y[ss] / r[ss];
+ I[ss] = delta * K[ss];
+
+ lambda_R[ss] = C_R[ss] ^ -sigma_C;
+ q[ss] = lambda_R[ss];
+ lambda_NR[ss] = C_NR[ss] ^ -sigma_C;
+
+ };
+};
+
+block RICARDIAN_HOUSEHOLD
+{
+ definitions
+ {
+ u_R[] = shock_beta_R[] * (C_R[] ^ (1 - sigma_C) / (1 - sigma_C) -
+ L_R[] ^ (1 + sigma_L) / (1 + sigma_L));
+ };
+
+ controls
+ {
+ C_R[], L_R[], I[], K[];
+ };
+
+ objective
+ {
+ U_R[] = u_R[] + beta * E[][U_R[1]];
+ };
+
+ constraints
+ {
+ @exclude
+ C_R[] + I[] = r[] * K[-1] + w[] * L_R[] : lambda_R[];
+
+ K[] = (1 - delta) * K[-1] + I[]: q[];
+ };
+
+ identities
+ {
+ log(shock_beta_R[]) = rho_beta_R * log(shock_beta_R[-1]) + epsilon_beta_R[];
+ };
+
+ shocks
+ {
+ epsilon_beta_R[];
+ };
+
+ calibration
+ {
+ beta = 0.99;
+ delta = 0.02;
+ sigma_C = 1.5;
+ sigma_L = 2.0;
+ rho_beta_R = 0.95;
+ };
+};
+
+block NON_RICARDIAN_HOUSEHOLD
+{
+ definitions
+ {
+ u_NR[] = (C_NR[] ^ (1 - sigma_C) / (1 - sigma_C) -
+ L_NR[] ^ (1 + sigma_L) / (1 + sigma_L));
+ };
+
+ controls
+ {
+ C_NR[], L_NR[];
+ };
+
+ objective
+ {
+ U_NR[] = u_NR[] + beta * E[][U_NR[1]];
+ };
+
+ constraints
+ {
+ @exclude
+ C_NR[] = w[] * L_NR[]: lambda_NR[];
+ };
+};
+
+
+block FIRM
+{
+ controls
+ {
+ K[-1], L[], L_R[], L_NR[];
+ };
+
+ objective
+ {
+ TC[] = -(r[] * K[-1] + w[] * L_R[] + w[] * L_NR[]);
+ };
+
+ constraints
+ {
+ L[] = L_R[] ^ alpha_L * L_NR[] ^ (1 - alpha_L) : mc_L[];
+ Y[] = TFP[] * K[-1] ^ alpha * L[] ^ (1 - alpha) : mc[];
+ };
+
+ identities
+ {
+ # Perfect competition
+ mc[] = 1;
+
+ # Exogenous technology process
+ log(TFP[]) = rho_TFP * log(TFP[-1]) + epsilon_TFP[];
+ };
+
+ shocks
+ {
+ epsilon_TFP[];
+ };
+
+ calibration
+ {
+ alpha = 0.35;
+ alpha_L = 0.5;
+
+ rho_TFP = 0.95;
+ };
+};
+
+block EQULIBRIUM
+{
+ identities
+ {
+ Y[] = C_R[] + C_NR[] + I[];
+ };
+};
diff --git a/GCN Files/RBC_two_household_additive.txt b/GCN Files/RBC_two_household_additive.txt
new file mode 100644
index 0000000..636aefb
--- /dev/null
+++ b/GCN Files/RBC_two_household_additive.txt
@@ -0,0 +1,183 @@
+assumptions
+{
+ positive
+ {
+ Y[], K[], C_NR[], C_R[],
+ w[], r[], mc_L[],
+ L[], L_NR[], L_R[],
+ TFP[],
+ alpha, alpha_L, beta, sigma_C, sigma_L, delta, omega;
+ };
+};
+
+tryreduce
+{
+ U_NR[], U_R[], TC[];
+};
+
+# block STEADY_STATE
+# {
+ # definitions
+ # {
+ # f1[ss] = (r[ss] / (r[ss] - alpha * delta));
+ # f2[ss] = (alpha_L * (1 - alpha_L) * (1 - alpha)) ^ (-sigma_L / sigma_C);
+ # f3[ss] = alpha_L ^ (sigma_L / sigma_C) +
+ # (1 - alpha_L) ^ (sigma_L / sigma_C);
+
+ # };
+ # identities
+ # {
+ # TFP[ss] = 1.0;
+ # shock_beta_R[ss] = 1.0;
+
+ # r[ss] = 1 / beta - (1 - delta);
+ # w[ss] = (1 - alpha) * alpha_L ^ alpha_L * (1 - alpha_L) ^ (1 - alpha_L) *
+ # (r[ss] / alpha) ^ (alpha / (alpha - 1));
+ # mc_L[ss] = w[ss] / alpha_L ^ alpha_L / (1 - alpha_L) ^ (1 - alpha_L);
+ # Y[ss] = (f1[ss] * f2[ss] * f3[ss] * w[ss] ^ ((1 + sigma_L) / sigma_C)) ^
+ # (sigma_C / (sigma_L + sigma_C));
+
+ # L[ss] = (1 - alpha) * Y[ss] / mc_L[ss];
+
+ # L_R[ss] = alpha_L * L[ss] * mc_L[ss] / w[ss];
+ # L_NR[ss] = (1 - alpha_L) * L[ss] * mc_L[ss] / w[ss];
+
+ # C_R[ss] = w[ss] ^ (1/sigma_C) * L_R[ss] ^ (-sigma_L / sigma_C);
+ # C_NR[ss] = w[ss] ^ (1/sigma_C) * L_NR[ss] ^ (-sigma_L / sigma_C);
+
+ # K[ss] = alpha * Y[ss] / r[ss];
+ # I[ss] = delta * K[ss];
+
+ # lambda_R[ss] = C_R[ss] ^ -sigma_C;
+ # q[ss] = lambda_R[ss];
+ # lambda_NR[ss] = C_NR[ss] ^ -sigma_C;
+
+ # };
+# };
+
+block RICARDIAN_HOUSEHOLD
+{
+ definitions
+ {
+ u_R[] = shock_beta_R[] * (C_R[] ^ (1 - sigma_C) / (1 - sigma_C) -
+ L_R[] ^ (1 + sigma_L) / (1 + sigma_L));
+
+ Phi_I[] = (1 - gamma_I / 2 * (I[] / I[-1] - 1) ^ 2);
+ };
+
+ controls
+ {
+ C_R[], L_R[], I[], K[];
+ };
+
+ objective
+ {
+ U_R[] = u_R[] + beta * E[][U_R[1]];
+ };
+
+ constraints
+ {
+ @exclude
+ C_R[] + I[] = r[] * K[-1] + w[] * L_R[] : lambda_R[];
+
+ K[] = (1 - delta) * K[-1] + Phi_I[] * I[]: q[];
+ };
+
+ identities
+ {
+ log(shock_beta_R[]) = rho_beta_R * log(shock_beta_R[-1]) + epsilon_beta_R[];
+ };
+
+ shocks
+ {
+ epsilon_beta_R[];
+ };
+
+ calibration
+ {
+ beta = 0.99;
+ delta = 0.02;
+ sigma_C = 1.5;
+ sigma_L = 2.0;
+ rho_beta_R = 0.95;
+ gamma_I = 5;
+ };
+};
+
+block NON_RICARDIAN_HOUSEHOLD
+{
+ definitions
+ {
+ u_NR[] = (C_NR[] ^ (1 - sigma_C) / (1 - sigma_C) -
+ L_NR[] ^ (1 + sigma_L) / (1 + sigma_L));
+ };
+
+ controls
+ {
+ C_NR[], L_NR[];
+ };
+
+ objective
+ {
+ U_NR[] = u_NR[] + beta * E[][U_NR[1]];
+ };
+
+ constraints
+ {
+ C_NR[] = w[] * L_NR[]: lambda_NR[];
+ };
+};
+
+
+block FIRM
+{
+ controls
+ {
+ K[-1], L[];
+ };
+
+ objective
+ {
+ TC[] = -(r[] * K[-1] + w[] * L[]);
+ };
+
+ constraints
+ {
+ Y[] = TFP[] * K[-1] ^ alpha * L[] ^ (1 - alpha) : mc[];
+ };
+
+ identities
+ {
+ # Perfect competition
+ mc[] = 1;
+
+ # Exogenous technology process
+ log(TFP[]) = rho_TFP * log(TFP[-1]) + epsilon_TFP[];
+ };
+
+ shocks
+ {
+ epsilon_TFP[];
+ };
+
+ calibration
+ {
+ alpha = 0.35;
+ rho_TFP = 0.95;
+ };
+};
+
+block EQULIBRIUM
+{
+ identities
+ {
+ L[] = omega * L_R[] + (1 - omega) * L_NR[];
+ C[] = omega * C_R[] + (1 - omega) * C_NR[];
+ Y[] = C[] + I[];
+ };
+
+ calibration
+ {
+ omega = 0.5;
+ };
+};
diff --git a/GCN Files/skilled_unskilled_rbc.gcn b/GCN Files/skilled_unskilled_rbc.gcn
new file mode 100644
index 0000000..797f3ce
--- /dev/null
+++ b/GCN Files/skilled_unskilled_rbc.gcn
@@ -0,0 +1,134 @@
+block STEADY_STATE
+{
+ identities
+ {
+ A[ss] = 1.0;
+ Div[ss] = 0.0;
+ r_u[ss] = 1 / beta_u - (1 - delta_u);
+ r_s[ss] = 1 / beta_s - (1 - delta_s);
+ };
+};
+
+block SKILLED_HOUSEHOLD
+{
+ definitions
+ {
+ u_s[] = log(C_s[]) - Theta_s * L_s[];
+ };
+
+ objective
+ {
+ U_s[] = u_s[] + beta_s * E[][U_s[1]];
+ };
+
+ controls
+ {
+ C_s[], L_s[], K_s[], I_s[];
+ };
+
+ constraints
+ {
+ C_s[] + I_s[] = w_s[] * L_s[] + r_s[] * K_s[-1] + s * Div[]: lambda_s[];
+ K_s[] = (1 - delta_s) * K_s[-1] + I_s[];
+ };
+
+ calibration
+ {
+ beta_s = 0.99;
+ delta_s = 0.035;
+ Theta_s = 1;
+ s = 0.5; # Share of dividend that the skilled household gets (could be alpha_L ?)
+ };
+};
+
+block UNSKILLED_HOUSEHOLD
+{
+ definitions
+ {
+ u_u[] = log(C_u[]) - Theta_u * L_u[];
+ };
+
+ objective
+ {
+ U_u[] = u_u[] + beta_u * E[][U_u[1]];
+ };
+
+ controls
+ {
+ C_u[], L_u[], K_u[], I_u[];
+ };
+
+ constraints
+ {
+ C_u[] + I_u[] = w_u[] * L_u[] + r_u[] * K_u[-1] + (1 - s) * Div[]: lambda_u[];
+ K_u[] = (1 - delta_u) * K_u[-1] + I_u[];
+ };
+
+ calibration
+ {
+ beta_u = 0.99;
+ delta_u = 0.035;
+ Theta_u = 1;
+ };
+};
+
+
+block FIRM
+{
+ objective
+ {
+ TC[] = -(r_u[] * K_u[] + r_s[] * K_s[] + w_u[] * L_u[] + w_s[] * L_s[]);
+ };
+
+ controls
+ {
+ K_u[-1], K_s[-1], L_u[], L_s[], K[], L[];
+ };
+
+ constraints
+ {
+ # Bundle labor -- skilled/unskilled are imperfect substitutes
+ L[] = (alpha_L ^ (1 / psi_L) * L_u[] ^ ((psi_L - 1) / psi_L) +
+ (1 - alpha_L) ^ (1 / psi_L) * L_s[] ^ ((psi_L - 1) / psi_L)) ^
+ (psi_L / (psi_L - 1));
+
+ # Bundle capital -- perfect substitutes
+ K[] = K_u[-1] ^ alpha_K * K_s[-1] ^ (1 - alpha_K);
+
+ # Production function
+ Y[] = A[] * K[] ^ alpha * L[] ^ (1 - alpha) : P[];
+ };
+
+ identities
+ {
+ # Perfect competition
+ P[] = 1;
+ Div[] = Y[] * P[] + TC[];
+ };
+
+ calibration
+ {
+ alpha_L = 0.5; # share of unskilled labor in economy
+ alpha_K = 0.5; # share of capital stock owned by unskilled household
+ psi_L = 3.0; # Elasticity of substitution btwn skilled & unskilled, psi_L -> oo implies perfect substitutes
+ alpha = 0.66; # Share of capital in production
+ };
+};
+
+block TECHNOLOGY
+{
+ identities
+ {
+ log(A[]) = rho * log(A[-1]) + epsilon_A[];
+ };
+
+ shocks
+ {
+ epsilon_A[];
+ };
+
+ calibration
+ {
+ rho = 0.95;
+ };
+};
diff --git a/examples/Multiple Households.ipynb b/examples/Multiple Households.ipynb
new file mode 100644
index 0000000..7d48c05
--- /dev/null
+++ b/examples/Multiple Households.ipynb
@@ -0,0 +1,420 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "id": "a3c80085",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sympy as sp\n",
+ "import gEconpy as ge\n",
+ "import gEconpy.plotting as gp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 258,
+ "id": "844c4ca8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Model Building Complete.\n",
+ "Found:\n",
+ "\t16 equations\n",
+ "\t16 variables\n",
+ "\tThe following variables were eliminated at user request:\n",
+ "\t\tTC_t,U_NR_t,U_R_t\n",
+ "\tThe following \"variables\" were defined as constants and have been substituted away:\n",
+ "\t\tmc_t\n",
+ "\t2 stochastic shocks\n",
+ "\t\t 0 / 2 has a defined prior. \n",
+ "\t9 parameters\n",
+ "\t\t 0 / 9 has a defined prior. \n",
+ "\t0 parameters to calibrate.\n",
+ "Model appears well defined and ready to proceed to solving.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "mod = ge.model_from_gcn(\"../../../gEconpy/GCN Files/RBC_two_household_additive.gcn\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 262,
+ "id": "cf73612b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "976cc10634da4f9eac50342e9245f146",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Steady state found\n",
+ "--------------------------------------------------------------------------------\n",
+ "Optimizer message The solution converged.\n",
+ "Sum of squared residuals 1.4317932293331621e-21\n",
+ "Maximum absoluate error 2.69482214321215e-11\n",
+ "Gradient L2-norm at solution 1.7978379435964637e-10\n",
+ "Max abs gradient at solution 9.149458968238378e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "ss_res, success = mod.steady_state(how=\"root\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 271,
+ "id": "8e61081b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Model solution has 4 eigenvalues greater than one in modulus and 4 forward-looking variables. \n",
+ "Blanchard-Kahn condition is satisfied.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Modulus | \n",
+ " Real | \n",
+ " Imaginary | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.653468e-35 | \n",
+ " -1.653468e-35 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.653028e-34 | \n",
+ " -1.653028e-34 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.686148e-34 | \n",
+ " 1.686148e-34 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7.255700e-23 | \n",
+ " -7.255700e-23 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 7.609220e-23 | \n",
+ " -7.609220e-23 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 9.155729e-22 | \n",
+ " 9.155729e-22 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 1.014493e-21 | \n",
+ " -1.014493e-21 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 3.309565e-21 | \n",
+ " 3.309565e-21 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 4.360073e-21 | \n",
+ " 4.360073e-21 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 1.318637e-19 | \n",
+ " 1.318637e-19 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 1.439463e-17 | \n",
+ " -1.439463e-17 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 2.998660e-17 | \n",
+ " 2.998660e-17 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 7.283610e-01 | \n",
+ " -7.283610e-01 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 9.500000e-01 | \n",
+ " -9.500000e-01 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 9.500000e-01 | \n",
+ " -9.500000e-01 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 9.735574e-01 | \n",
+ " -9.735574e-01 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 1.027303e+00 | \n",
+ " -1.027303e+00 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 1.400627e+00 | \n",
+ " -1.400627e+00 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 4.756147e+06 | \n",
+ " 4.756147e+06 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 4.922745e+07 | \n",
+ " 4.922745e+07 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Modulus Real Imaginary\n",
+ "0 1.653468e-35 -1.653468e-35 0.0\n",
+ "1 1.653028e-34 -1.653028e-34 0.0\n",
+ "2 1.686148e-34 1.686148e-34 0.0\n",
+ "3 7.255700e-23 -7.255700e-23 0.0\n",
+ "4 7.609220e-23 -7.609220e-23 0.0\n",
+ "5 9.155729e-22 9.155729e-22 0.0\n",
+ "6 1.014493e-21 -1.014493e-21 0.0\n",
+ "7 3.309565e-21 3.309565e-21 0.0\n",
+ "8 4.360073e-21 4.360073e-21 0.0\n",
+ "9 1.318637e-19 1.318637e-19 0.0\n",
+ "10 1.439463e-17 -1.439463e-17 0.0\n",
+ "11 2.998660e-17 2.998660e-17 0.0\n",
+ "12 7.283610e-01 -7.283610e-01 0.0\n",
+ "13 9.500000e-01 -9.500000e-01 0.0\n",
+ "14 9.500000e-01 -9.500000e-01 0.0\n",
+ "15 9.735574e-01 -9.735574e-01 0.0\n",
+ "16 1.027303e+00 -1.027303e+00 0.0\n",
+ "17 1.400627e+00 -1.400627e+00 0.0\n",
+ "18 4.756147e+06 4.756147e+06 0.0\n",
+ "19 4.922745e+07 4.922745e+07 0.0"
+ ]
+ },
+ "execution_count": 271,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ge.bk_condition(mod, steady_state_dict=ss_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 270,
+ "id": "d29842a8",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAGUCAYAAABXxHkiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbfUlEQVR4nOydd3wU1fr/35veG+kkJKGkkFBSKRaqNEHFAjYEQbEXvN4fYgUblnsVvfeCjaKIiIpYQFEQwUJJSAgdIpBQE0gPSUjd8/sj3x1ZUnYSsplNct6v175gZ8/MPPPJs/PsOXPO8+iEEAKJRCKRSCQmsdLaAIlEIpFI2gsyaEokEolEohIZNCUSiUQiUYkMmhKJRCKRqEQGTYlEIpFIVCKDpkQikUgkKpFBUyKRSCQSlcigKZFIJBKJSmTQlEgkEolEJTJoSoxYtmwZOp2u0dfmzZuVtqGhoUybNk0zW83N0KFDGTp0qNZmXDa7du1iyJAhuLu7o9PpWLBgQaNtDX/nxv6uL774otImKyur1WycNm0aoaGhLdpX7d+purqa999/n8TERLy8vHByciIkJITrr7+eNWvWtOjcOp2OuXPntmjfhQsXsmzZsnrbs7Ky0Ol0DX4m0R4brQ2QWCZLly4lMjKy3vbevXsr/1+zZg1ubm5taZakBUyfPp2ysjI+//xzPD09TQYnV1dXvvzyS/7zn//g6uqqbBdCsGzZMtzc3CgpKTGz1a3PlClT+Prrr3n88ceZN28e9vb2HDt2jPXr1/PTTz8xceLENrVn4cKFeHt71/uBEhAQwLZt2+jRo0eb2iNRhwyakgaJiYkhISGhyTaxsbFtZI3kcti3bx/33nsvY8eOVdX++uuvZ/Xq1Xz++efce++9yvZNmzaRmZnJvffey4cffmguc81CZmYmq1at4vnnn2fevHnK9hEjRnDvvfei1+s1tM4Ye3t7Bg4cqLUZkkaQw7OSFtPQ8Oz+/fsZNWoUTk5O+Pj48NBDD7Fu3bp6Q7sAGzduZMSIEbi5ueHk5MQVV1zBL7/8YtRm7ty56HQ69u/fz2233Ya7uzt+fn5Mnz6d4uJipV1sbCxXXXVVPRtra2vp2rUrN954o7Jt3rx5DBgwAC8vL9zc3IiLi2Px4sWYql2wefPmBq+jseG0nTt3ct111+Hl5YWDgwOxsbF88cUXRm3Ky8t58sknCQsLw8HBAS8vLxISEli5cmWTtkBdMLz++uvx9PTEwcGB/v378/HHHyufG4baa2pqWLRokTKsagp3d3cmTpzIkiVLjLYvWbKEK664gvDw8Ab3W7JkCf369VOuY+LEiRw8eLBeu2XLlhEREYG9vT1RUVF88sknDR6vqqqKl19+mcjISOzt7fHx8eHuu+8mNzfX5DVcSn5+PlDXi2sIKyvjW+GJEye488478fX1Vez897//bTK4Gvz1Ugx/C8OQdmhoKPv372fLli3K38UwAtCYP/3xxx+MGDECV1dXnJycGDx4MOvWrWvwPL/++isPPPAA3t7edOnShRtvvJEzZ840abtEHTJoShqktraWmpoao1dtbW2T+2RnZzNkyBAOHz7MokWL+OSTTzh//jwPP/xwvbaffvopo0aNws3NjY8//pgvvvgCLy8vRo8eXS9wAtx0002Eh4ezevVqnnrqKT777DNmzZqlfH733Xfzxx9/8Ndffxnt9/PPP3PmzBnuvvtuZVtWVhb33XcfX3zxBV9//TU33ngjjzzyCC+99FJzZWqUX3/9lSuuuIKioiLee+89vv32W/r378/kyZONboZPPPEEixYt4tFHH2X9+vUsX76cW265RbnJN8bhw4cZPHgw+/fv59133+Xrr7+md+/eTJs2jTfeeAOAa6+9lm3btgFw8803s23bNuW9KWbMmMH27duVoFdUVMTXX3/NjBkzGmw/f/58ZsyYQXR0NF9//TXvvPMOe/bsYdCgQUZ/k2XLlnH33XcTFRXF6tWrefbZZ3nppZfYtGmT0fH0ej3XX389r732Grfffjvr1q3jtddeY8OGDQwdOpQLFy6oug4DUVFReHh4MG/ePD744IMmn8fm5uYyePBgfv75Z1566SW+++47Ro4cyZNPPtmgL7eENWvW0L17d2JjY5W/S1PPVbds2cLw4cMpLi5m8eLFrFy5EldXVyZMmMCqVavqtb/nnnuwtbXls88+44033mDz5s3ceeedrWJ7p0dIJBexdOlSATT4sra2NmobEhIipk6dqrz/5z//KXQ6ndi/f79Ru9GjRwtA/Prrr0IIIcrKyoSXl5eYMGGCUbva2lrRr18/kZSUpGx74YUXBCDeeOMNo7YPPvigcHBwEHq9XgghRF5enrCzsxNPP/20UbtJkyYJPz8/UV1d3eD11tbWiurqavHiiy+KLl26KMcTQoghQ4aIIUOGKO9//fVXo+swkJmZKQCxdOlSZVtkZKSIjY2td97x48eLgIAAUVtbK4QQIiYmRtxwww0N2tYUt956q7C3txcnTpww2j527Fjh5OQkioqKlG2AeOihh1Qd19BWr9eLsLAw8eSTTwohhPjf//4nXFxcxPnz58Wbb74pAJGZmSmEEKKwsFA4OjqKcePGGR3rxIkTwt7eXtx+++1CiDqtAwMDRVxcnJHOWVlZwtbWVoSEhCjbVq5cKQCxevVqo2OmpKQIQCxcuFDZdunfqTHWrVsnvL29FX/u0qWLuOWWW8R3331n1O6pp54SgNixY4fR9gceeEDodDpx+PBhI71eeOEF5b3BXy/F8L0yaCaEENHR0Q3a3ZA/DRw4UPj6+orz588r22pqakRMTIwICgpS9DSc58EHHzQ65htvvCEAkZ2d3ag+EnXInqakQT755BNSUlKMXjt27Ghyny1bthATE2M0WQjgtttuM3q/detWCgoKmDp1qlFPVq/XM2bMGFJSUigrKzPa57rrrjN637dvXyoqKjh37hwAXbp0YcKECXz88cfKEFphYSHffvstd911FzY2fz++37RpEyNHjsTd3R1ra2tsbW15/vnnyc/PV453ORw5coRDhw5xxx13ABhd47hx48jOzubw4cMAJCUl8eOPP/LUU0+xefNm1T2oTZs2MWLECIKDg422T5s2jfLyctU9ysYwzKBdvnw5NTU1LF68mEmTJuHi4lKv7bZt27hw4UK9ofrg4GCGDx+ujBwcPnyYM2fOcPvttxsNYYaEhDB48GCjfdeuXYuHhwcTJkww0q9///74+/vXGyJXw7hx4zhx4gRr1qzhySefJDo6mm+++YbrrrvOqAe5adMmevfuTVJSktH+06ZNQwhRr1dsbsrKytixYwc333yzkf7W1tZMmTKFU6dOKf5koKHvC8Dx48fNb3AHRwZNSYNERUWRkJBg9IqPj29yn/z8fPz8/Optv3Tb2bNngbohQ1tbW6PX66+/jhCCgoICo326dOli9N7e3h7AKMhMnz6d06dPs2HDBgBWrlxJZWWl0c08OTmZUaNGAfDhhx/y559/kpKSwjPPPFPveC3FcH1PPvlkvet78MEHAcjLywPg3XffZfbs2XzzzTcMGzYMLy8vbrjhhnrDzJeSn5/f4PO5wMBA5fPLxfD88NVXXyUtLa3RodmmnhcGBgYqnxv+9ff3r9fu0m1nz56lqKgIOzu7ehrm5OQo+jUXR0dHbrjhBt588022bNnCkSNH6N27N//73//Yv3+/Yqe5tW0OhYWFCCGaZZOa74ukZcjZs5JWo0uXLkrAuJicnByj997e3gD85z//aXSWYEPB1xSjR48mMDCQpUuXMnr0aJYuXcqAAQOMer6ff/45tra2rF27FgcHB2X7N998Y/L4hvaVlZVG2y+9gRuub86cOUYTkC4mIiICAGdnZ+bNm8e8efM4e/as0uucMGEChw4datSWLl26kJ2dXW+7YbKHwYbLITg4mJEjRzJv3jwiIiLq9QYvtgVo1B6DLYZ2l/pDQ9sME1jWr1/f4DkvXgpzOXTr1o2ZM2fy+OOPs3//fqKjoy9L24t9xBCooL6PNAdPT0+srKzM/veWqEP2NCWtxpAhQ9i3bx8HDhww2v75558bvb/iiivw8PDgwIED9XqzhpednV2zz28Yrvrmm2/4/fff2blzJ9OnTzdqo9PpsLGxwdraWtl24cIFli9fbvL4htmNe/bsMdr+3XffGb2PiIigV69e7N69u9Hra+im7+fnx7Rp07jttts4fPgw5eXljdoyYsQINm3aVG9G5CeffIKTk1OrLVn4xz/+wYQJE3juuecabTNo0CAcHR359NNPjbafOnVKGUaGOl0CAgJYuXKl0Uzl48ePs3XrVqN9x48fT35+PrW1tQ3qZ/jRoZbz589TWlra4GeGyU6GXtuIESM4cOAAaWlpRu0++eQTdDodw4YNa/Q8jfnI999/X6+tvb29qp6fs7MzAwYM4OuvvzZqr9fr+fTTTwkKCmp0RrOk9ZE9TUmD7Nu3j5qamnrbe/TogY+PT4P7PP744yxZsoSxY8fy4osv4ufnx2effab0mAzT+l1cXPjPf/7D1KlTKSgo4Oabb8bX15fc3Fx2795Nbm4uixYtapHd06dP5/XXX+f222/H0dGRyZMnG31+7bXX8tZbb3H77bczc+ZM8vPz+de//mXUK2gMf39/Ro4cyfz58/H09CQkJIRffvmFr7/+ul7b999/n7FjxzJ69GimTZtG165dKSgo4ODBg6SlpfHll18CMGDAAMaPH0/fvn3x9PTk4MGDLF++nEGDBuHk5NSoLS+88AJr165l2LBhPP/883h5ebFixQrWrVvHG2+8gbu7ezOVa5hRo0Ypw9mN4eHhwXPPPcfTTz/NXXfdxW233UZ+fj7z5s3DwcGBF154Aaj7+7/00kvcc889TJw4kXvvvZeioiLmzp1bb3j21ltvZcWKFYwbN47HHnuMpKQkbG1tOXXqFL/++ivXX399s5IRHD58mNGjR3PrrbcyZMgQAgICKCwsZN26dXzwwQcMHTpU6UnPmjWLTz75hGuvvZYXX3yRkJAQ1q1bx8KFC3nggQeaDFDjxo3Dy8uLGTNm8OKLL2JjY8OyZcs4efJkvbZ9+vTh888/Z9WqVXTv3h0HBwf69OnT4HHnz5/PNddcw7Bhw3jyySexs7Nj4cKF7Nu3j5UrV6paSiRpJbSdhySxNJqaPQuIDz/8UGl76exZIYTYt2+fGDlypHBwcBBeXl5ixowZ4uOPPxaA2L17t1HbLVu2iGuvvVZ4eXkJW1tb0bVrV3HttdeKL7/8UmljmI2Ym5vboJ0Xz0Y0MHjwYAGIO+64o8FrXLJkiYiIiBD29vaie/fuYv78+WLx4sX1jtfQrMzs7Gxx8803Cy8vL+Hu7i7uvPNOsXPnznqzHYUQYvfu3WLSpEnC19dX2NraCn9/fzF8+HDx3nvvKW2eeuopkZCQIDw9PRV7Zs2aJfLy8hq0/WL27t0rJkyYINzd3YWdnZ3o169fPRuEaNns2aa4dPasgY8++kj07dtX2NnZCXd3d3H99dfXm0ltaNerVy9hZ2cnwsPDxZIlS8TUqVONZs8KIUR1dbX417/+Jfr16yccHByEi4uLiIyMFPfdd5/466+/lHZqZs8WFhaKl19+WQwfPlx07dpV2NnZCWdnZ9G/f3/x8ssvi/LycqP2x48fF7fffrvo0qWLsLW1FREREeLNN99UZj1frNfFs2eFECI5OVkMHjxYODs7i65du4oXXnhBfPTRR/U0y8rKEqNGjRKurq4CUK6/odmzQgjx+++/i+HDhwtnZ2fh6OgoBg4cKL7//nujNobvRUpKitH2xmZ+S5qPTggTK7olkstk5syZrFy5kvz8/BYNu0okEomlIIdnJa3Kiy++SGBgIN27d6e0tJS1a9fy0Ucf8eyzz8qAKZFI2j0yaEpaFVtbW958801OnTpFTU0NvXr14q233uKxxx7T2jSJRCK5bOTwrEQikUgkKpFLTiQSiUQiUUmnDJqbNm1i+vTpREZG4uzsTNeuXbn++utJTU1Vtb+hkkFjr4uTQV9Okdr2QEcsRH1pUePy8nLmzp3bYOo2gy+0dPH6tGnTGkxNp5ZffvmFhIQEnJ2d0el0fPPNN/UqajSHhipsbN26lblz51JUVNRiOxti2rRp6HQ6XF1dG1xDefz4caysrFr9O9RYtRo1dJQC0QcOHGDu3LmtWkh86NChxMTEtNrxLJVO+Uxz0aJF5Ofn89hjj9G7d29yc3P597//zcCBA/npp58YPny4quOsX7++wfVwF6e72rZtG0FBQa1mu8T8LFy40Oh9eXm5UoPx4mCqNUIIJk2aRHh4ON999x3Ozs5ERERQU1PDtm3bGi2D1RQNFUDeunUr8+bNY9q0aXh4eLTiFdQ9A6+pqWHVqlX10vQtXboUV1fXdlnw2tI5cOAA8+bNY+jQoSaLkkuM6ZRB83//+x++vr5G28aMGUPPnj159dVXVQfN+Ph4k+mrZDHZ9selCectlTNnzlBQUMDEiROVrDsGGktAYYq2LoBsZ2fHhAkTWLJkiVHQFEKwbNkyJk+e3O4KXks6Np1yePbSgAl1WWp69+7dYOaOy6GhoaU//viDQYMG4eDgQNeuXXnuuef46KOPGhxSW7VqFYMGDcLZ2RkXFxdGjx7Nrl27jNoYhviOHDnCuHHjcHFxITg4mH/84x9KntTq6mp8fX2ZMmVKPRuLiopwdHTkiSeeAKCiooJ//OMf9O/fH3d3d7y8vBg0aBDffvutyettbGiwsSExNYWoc3NzmTlzJsHBwUox4iuuuIKNGzc2asf+/fvR6XRK5h2A1NRUdDod0dHRRm2vu+46o2T0Fw/PZmVlKQFo3rx5yhD8pUPSZ8+ebbJIdnMIDQ1l/PjxrF+/nri4OBwdHYmMjDQqCj137lxlBGP27NlGRYwb+hsYhs5SUlK46qqrcHJyonv37rz22mtGhZUvHX6cO3cu//znPwEICwtTrn/z5s3MmDEDLy+vBtP9DR8+vJ7OjTF9+nS2bt1qVKlj48aNHD9+3KgO6sWYKsBt4NChQ4wZMwYnJye8vb25//77OX/+fL12jT1muHSoviGmTZvWYG+toYLUX375JQMGDMDd3V35G1ya6rEhdDodDz/8MMuXLycqKgonJyf69evH2rVr67U1Vax62bJl3HLLLQAMGzZM+Zs2NeTcnO+gKR8DdUW+ExMTufbaa43269OnDzqdjpSUFGXb119/jU6nY+/evYD6wvUtpVMGzYYoLi4mLS1N9RcdWlaoec+ePVxzzTWUl5fz8ccf895775GWlsYrr7xSr+2rr77KbbfdRu/evfniiy9Yvnw558+f56qrrqqX37W6uprrrruOESNG8O233zJ9+nTefvttXn/9daBuGOzOO+9k9erV9Ya7Vq5cSUVFhXKDqqyspKCggCeffJJvvvmGlStXcuWVV3LjjTfyySefqNbHFGoLURvyyT7//PP8/PPPfPTRR4wcObLJahPR0dEEBAQYfak3btyIo6MjBw4cUHK21tTUsGXLFkaOHNngcQICApSk4TNmzFAKBl+ai9VUkezmsnv3bv7xj38wa9Ysvv32W/r27cuMGTP47bffgLoiw4b0fY888ojJIsZQlxT9jjvu4M477+S7775j7NixzJkzp17O2Iu55557eOSRR4C6m5Ph+uPi4njssccoLCzks88+M9rnwIED/Prrrzz00EOqrnXkyJGEhIQY/ShYvHgxV199Nb169arXXk0Bbqj7IWPIh7xw4UKWL19OaWlpqxWSbi7btm1j8uTJdO/enc8//5x169bx/PPPN5iusiHWrVvHf//7X1588UVWr16Nl5cXEydO5NixY0obNcWqr732Wl599VWgbtTN8De9NEBdjNrvoBofU1vke+TIkfz2229UV1cDdX/Pffv24ejoqFQygrrvtZ+fX70UhK39nVTQMh2RJXHHHXcIGxsbsXPnTpNtDandGnr16NHDqC2XpNm65ZZbhLOzs1FauNraWtG7d2+jNFsnTpwQNjY24pFHHjE63vnz54W/v7+YNGmSsm3q1KkCEF988YVR23HjxomIiAjl/Z49ewQgPvjgA6N2SUlJIj4+vtHrrampEdXV1WLGjBkiNjbW6LNLU+k1lt7u0jRezSlE7eLiIh5//PFG7WuMO++8U3Tv3l15P3LkSHHvvfcKT09P8fHHHwshhPjzzz8FIH7++Wel3aVp2XJzcxtMlyaE+iLZjTF16lTh7OxstC0kJEQ4ODiI48ePK9suXLggvLy8xH333adsM6Rbe/PNN432b+hvMGTIkAYLK/fu3VuMHj263jEvTuHWWNo8w3H79+9vtO2BBx4Qbm5uRgWTTV37Cy+8IPz9/UV1dbXIz88X9vb2YtmyZQ1qr7YA9+zZs4VOpxPp6elG7a655pp6KeUaSglpuL6LfaEhfRpKAWi4potvsf/6178EYFQgXC2A8PPzEyUlJcq2nJwcYWVlJebPn69sU1us+ssvv2xWWj0130G1Pqa2yPfGjRsFIH777TchhBCffvqpcHV1FQ8++KAYNmyYsl+vXr2UQudCXP530hSypwk899xzrFixgrfffttkzciL2bhxY71CzaZKTBl+CV78LNTKyopJkyYZtfvpp5+oqanhrrvuMurJOjg4MGTIkHrDnDqdjgkTJhht69u3r1HR2T59+hAfH8/SpUuVbQcPHiQ5ObneENGXX37JFVdcgYuLCzY2Ntja2rJ48WKlIsTl0pxC1ElJSSxbtoyXX36Z7du3K788TTFixAiOHTtGZmYmFRUV/PHHH4wZM4Zhw4Ypv1Q3btyIvb09V1555WVdj6ki2c2lf//+dOvWTXnv4OBAeHj4ZRUR9vf3r1dY+VIfaS6PPfYY6enp/PnnnwCUlJSwfPlypk6d2qxZwXfffbdSGm3FihXY2dkpQ4iXorYA96+//kp0dDT9+vUzanf77bc35xJbjcTERAAmTZrEF198wenTp5u1/7Bhw4yq4/j5+eHr66v8/VpSrFotar+DanxMbZHvK664AgcHB2W0aMOGDQwdOpQxY8awdetWysvLOXnyJH/99VeDI0Wt/Z000OmD5rx583j55Zd55ZVXmj1s069fv3oli0xNuW5uoebExMR6RXhXrVpVb4mDk5OTUX1IqJvUUVFRYbRt+vTpbNu2Tak8snTpUuzt7bntttuUNl9//TWTJk2ia9eufPrpp2zbto2UlBSmT59e73gtpTmFqFetWsXUqVP56KOPGDRoEF5eXtx1110N1mW8GMMXaePGjfzxxx9UV1czfPhwRo4cqQz/bty4kSuuuAJHR8fLup7WLvp76fEMx7ycIsLmOOb1119PaGgo//vf/4C652VlZWWqh2YNhISEMGLECJYsWcKSJUu49dZbG63yorZIdH5+vqqC123F1VdfzTfffKP8GA4KCiImJoaVK1eq2t/U368lxarVovY7qMbH1P79HBwcjJ6b/vLLL1xzzTUMHTqU2tpafv/9d+XHb0NB01yFuDt10Jw3bx5z585l7ty5PP30021yzuYWav7qq6/q9WZTUlLYsWNHi85/2223YW9vz7Jly6itrWX58uXccMMNeHp6Km0+/fRTwsLCWLVqFTfccAMDBw4kISGhXvHlhmhuoeb//Oc/DV5fSkqK8kPC29ubBQsWkJWVxfHjx5k/fz5ff/21yfWhhjqDGzduZMOGDSQkJODh4cGIESPIzs5mx44dbN++vdHnmRLTWFlZ8dBDD/HVV1+RnZ3NwoULGTFiRLPrXULdD7rvvvuO9PT0JifHqC0S3aVLF1UFr6HObxvybzXrb5uz7/XXX88vv/xCcXExmzdvJigoiNtvv13pHV8O5ixW3dLvYEM0p8j3iBEjSE5OJjk5mVOnTnHNNdfg6upKYmIiGzZsYOPGjYSHh9cbdTAnnTZovvTSS8ydO5dnn31WqffXFgwZMoRNmzYZfaH0er3RLE+A0aNHY2Njw9GjRxstZNwSPD09ueGGG/jkk09Yu3YtOTk5DRZqtrOzM5r5l5OTo2r2rNpCzS0tRN2tWzcefvhhrrnmmnpFghti5MiRbNq0iQ0bNnDNNdcAEB4eTrdu3Xj++eeprq42GTRb6xdqe8XU9d9zzz3Y2dlxxx13cPjw4RZPtJk4cSITJ05k+vTpTS57UVuAe9iwYezfv5/du3cbtbt04hLU+e2lPpuRkaFqODM0NJRz584Z/Riuqqrip59+anQfe3t7hgwZokzUu3RGfEtoTrHqy/Hp5n4HL6U5Rb5HjhxJTU0Nzz33HEFBQURGRirbN27cyKZNm9r8R2+nXKf573//m+eff54xY8Zw7bXXsn37dqPP1a5TS01NbTC5Qe/evXFzc2twn2eeeYbvv/+eESNG8Mwzz+Do6Mh7772nPL8zFGoODQ3lxRdf5JlnnuHYsWOMGTMGT09Pzp49S3JyMs7OzsqC++Yyffp0Vq1axcMPP0xQUFA9pxs/fjxff/01Dz74IDfffDMnT57kpZdeIiAggL/++qvJYycmJhIREcGTTz5JTU0Nnp6erFmzhj/++MOondpC1MXFxQwbNozbb7+dyMhIXF1dSUlJYf369dx4440mr3XEiBEsXLiQvLw8FixYYLR96dKleHp6mnyO7erqSkhICN9++y0jRozAy8sLb2/vTrMo3DAr8Z133mHq1KnY2toSERGhPF/z8PDgrrvuYtGiRYSEhNR7tq4WBwcHvvrqK5Pt1BbgNhRFv/baa3n55Zfx8/NjxYoVyqOJi5kyZQp33nknDz74IDfddBPHjx/njTfeULXedfLkyTz//PPceuut/POf/6SiooJ333233kz6559/nlOnTjFixAiCgoIoKirinXfewdbWliFDhqhUqWnUFqs2PEb64IMPcHV1xcHBgbCwsAaHVy/3O3gpzSnyHR8fj6enJz///LPR8qORI0fy0ksvKf9vKSNGjGDLli2qZzADnXP2rGGWV2MvUzQ1exYQGzZsUNrSwKzL33//XQwYMEDY29sLf39/8c9//lO8/vrrDc6s++abb8SwYcOEm5ubsLe3FyEhIeLmm28WGzduVNo0NAPzYjsvpba2VgQHBwtAPPPMMw1e42uvvSZCQ0OFvb29iIqKEh9++GGDx2to1mFGRoYYNWqUcHNzEz4+PuKRRx4R69ata3C2nqlC1BUVFeL+++8Xffv2FW5ubsLR0VFERESIF154QZSVlTVo+8UUFhYKKysr4ezsLKqqqpTtK1asEIC48cYb6+3TUFHjjRs3itjYWGFvby8A5ZpbUiT7YhqbPXvttdeatKu5s2ejo6MbPP/FMz8bK4A8Z84cERgYKKysrBr8O27evFkA4rXXXmvyei89d0N+ezGNzVxWW4D7wIED4pprrjEqiv7tt9/Wuwa9Xi/eeOMN0b17d+Hg4CASEhLEpk2bVM2eFUKIH374QfTv3184OjqK7t27i//+97/1vi9r164VY8eOVYpg+/r6inHjxonff//dpFY0Uhy8oe+fmmLVQgixYMECERYWJqytrRu8JgNqv4NqfUwI9UW+hRBi4sSJAhArVqxQtlVVVQlnZ2dhZWUlCgsLjdo35ztpiAXNQVY5sRBGjRpFVlYWGRkZWpsikTSbf/zjHyxatIiTJ0822FuRSDoKnXJ4VmueeOIJYmNjCQ4OpqCggBUrVrBhwwYWL16stWkSSbPYvn07GRkZLFy4kPvuu08GTEmHRwZNDaitreX5558nJycHnU5H7969Wb58OXfeeafWpkkkzWLQoEE4OTkxfvx4Xn75Za3NkUjMjhyelUgkEolEJZ12yYlEIpFIJM1FBk2JRCKRSFQig6ZEIpFIJCqRQVMikUgkEpXIoEldEWaJaaROppEamUZqpA6pk2m00EgGTWhxuZzOhtTJNFIj00iN1CF1Mo0WGsmgKZFIJBKJSuQ6Terq0F1cGkvSMFIn00iNTCM1UofUyTRaaCR7mtQJLzGN1Mk0UiPTSI3UIXUyjRYayaAJ5Obmam1Cu0DqZBqpkWmkRuqQOplGC41k0ASjYsuSxpE6mUZqZBqpkTqkTqbRQiP5TFMikUgkEpXIniaQmpqqtQntAqmTaaRGppEaqUPqZBotNJJBE6ipqdHahHaB1Mk0UiPTSI3UIXUyjRYayaAJeHl5aW1Cu0DqZBqpkWmkRuqQOplGC43MGjR/++03JkyYQGBgIDqdjm+++cbkPlu2bCE+Ph4HBwe6d+/Oe++9V6/N6tWr6d27N/b29vTu3Zs1a9Zclp1+fn6XtX9nQepkGqmRaaRG6pA6mUYLjcwaNMvKyujXrx///e9/VbXPzMxk3LhxXHXVVezatYunn36aRx99lNWrVytttm3bxuTJk5kyZQq7d+9mypQpTJo0iR07drTYzoMHD7Z4386E1Mk0UiPTSI3UIXUyjRYa2Zjz4GPHjmXs2LGq27/33nt069aNBQsWABAVFcXOnTv517/+xU033QTAggULuOaaa5gzZw4Ac+bMYcuWLSxYsICVK1e2+jVIJBKJRGLArEGzuWzbto1Ro0YZbRs9ejSLFy+muroaW1tbtm3bxqxZs+q1MQTahqisrKSystJom729Pfb29gD07NmzdS6ggyN1Mk1n06i2tpbMzEwOHjzIX3/9xfHjxzl+/DhnzpwhNzeX3NxcysrKTB7H1dUVLy8v/Pz86Nq1K0FBQXTv3p1evXoRHh5Ojx49sLLqXFMwOpsvtQQtNLKooJmTk1NvjNrPz4+amhry8vIICAhotE1OTk6jx50/fz7z5s0z2jZr1iwmT54MgI+PD6dPn+bChQu4uroSFhbGnj17AAgJCUGv13Py5EkA+vfvz5EjRygtLcXZ2Znw8HB27doFQFBQENbW1hw/fhyAvn37kpWVRUlJCQ4ODkRHRytTpAMDA3FwcODYsWMAxMTEcOrUKYqKirCzs6N///4kJycD4O/vj4uLC0eOHAHqeuBnz56loKAAGxsb4uPjSU5ORgiBj48Pnp6eZGRkABAREUFBQQG5ublYWVmRmJjIzp07qa2tpUuXLvj6+ipDHL169aKkpISzZ88CMGDAANLS0qiurlbyOxps6NGjB+Xl5WRnZwOQkJDAvn37qKiowN3dnW7durF3714AQkNDqamp4dSpUwDExcVx6NAhysvLcXFxoUePHuzevRuAbt26AXDixAkA+vXrx9GjRyktLcXJyYnIyEjS0tIUvW1sbMjKygKgT58+nDhxguLiYhwcHIiJiWHnzp0ABAQE4OTkxNGjRwGIjo7mzJkzFBYWYmtrS1xcnDLE7+fnh5ubG3/99Zei97lz58jPz8fa2pqEhARSUlLQ6/X4+Pjg5eWlVFtwc3OjuLiY3NxcdDodSUlJpKamUlNTowQFg949e/aktLRU8d2kpCTS09OpqqrCw8ODoKAg9u3bB0D37t2pqKjgzJkzAMTHx7N//34qKipwc3MjNDTUyGdra2sVvWNjY8nIyKCsrAwXFxd69uxJeno6AMHBwVhZWRn5bGZmJufPn8fR0RFnZ2cWL15McnIyu3fvJi8vD3Nw/vx5zp8/r9ihBk9PT4YOHUpiYiIxMTH4+voa+ayXlxf+/v4cOHAAqPPZsrIyRe/ExET27NlDZWUlHh4eBAcHKz4bFhZGVVUVp0+fBup89uDBg216j7Czs0Ov17ere0RgYCD79+9X9Db3PaK8vJxBgwZd9j1iwIABqv2uzZIb6HQ61qxZww033NBom/DwcO6++25l6BXgzz//5MorryQ7Oxt/f3/s7Oz4+OOPue2225Q2K1asYMaMGVRUVDR4XFM9zR07djRLtM6K1Mk07VWjI0eOsGLFCj777DPlZqqGvn370rt3b6KioggPDyc0NJSQkBB8fX2xtrZucJ+mNKqpqeHs2bOcOnWKI0eOcOTIEQ4dOsTevXuVm7EawsPDuf3227nrrrsICwtTvZ8l0V59qS3RQiOL6mn6+/vX6zGeO3cOGxsbunTp0mSbpmZRXRwgJZLOzsmTJ1m0aBHvvvtuk0OnOp2O8ePHM3r0aEaNGkXPnj3NnrbMxsaGrl270rVrV5M3QyEEf/31Fxs3buSHH35g3bp1ymcZGRnMnTuXuXPnKtvc3Nx46KGHeOihh+jatau5LkHS0RFtBCDWrFnTZJv/9//+n4iKijLadv/994uBAwcq7ydNmiTGjh1r1GbMmDHi1ltvbbFter2+xft2JqROprFEjXbu3CkmTJgggEZf1113nfjqq6/EhQsXzG5PW2hUXl4uVq1aJcaNG9fkdU+cOFGkpaWZ3Z6WYIm+ZGlooZFZg+b58+fFrl27xK5duwQg3nrrLbFr1y5x/PhxIYQQTz31lJgyZYrS/tixY8LJyUnMmjVLHDhwQCxevFjY2tqKr776Smnz559/Cmtra/Haa6+JgwcPitdee03Y2NiI7du3t9hOS/3SWBpSJ9NYgkanTp0Sd999d6OB4qqrrhKrV68W1dXVmtinlUbV1dVi9erVYvDgwY1qM336dHHmzBlN7LsUS/AlS0cLjcwaNH/99dcGHXPq1KlCCCGmTp0qhgwZYrTP5s2bRWxsrLCzsxOhoaFi0aJF9Y775ZdfioiICGFraysiIyPF6tWrL8vOywm4nQmpk2m00Eiv14tvvvlG+Pv7N/h9u/HGG8WePXva3K7GsCQ/SktLExMnTmxQt8DAQPHDDz9oZpsl6WSpaKFRmw3PWjKHDh3S2oR2gdTJNG2lUW1trVi4cGGDN/s+ffqIn3/+uU3saAmW6kd6vV789NNPIjIyskFdP/roozYdDrRUnSwJLTSSpcGoy1zk7OystRkWj9TJNObUSAjBp59+yl133VXvs5kzZ/Lqq68qE+YsmfbiR+fOnWP27NksW7as3mefffYZt956q1knRrUXnbREC40612rhRjCshZM0jdTJNObQKDU1lS5dumBlZWUUMOfMmUNFRQVCCN5///12ETCh/fiRr68vS5cuRQhBeXk5/+///T/ls9tvvx0rKysCAgKUNYGtTXvRSUu00EgGTYnEArlw4QJ33nknOp2OhIQECgoKALjvvvsoKytDCMGrr74ql1K1EY6Ojrz++usIITh//jwzZ84E6hKyxMfHo9PpmD59OhcuXNDYUom5kcOzQG5uLj4+PlqbYfFInUxzuRpt3bqVK664wmhbbGwsa9asISQk5HLNswg6kh9lZmYyceJEJVuNge3bt1/2ovuOpJO50EIj2dOERjMJSYyROpmmJRoJIXjppZfQ6XRGAfOTTz5BCEFaWlqHCZjQsfwoLCyM9PR0hBAsXbpU2T5w4EB0Oh1vvPEGLe2XdCSdzIUWGsmgCUo+T0nTSJ1M0xyNLly4wLXXXouVlRXPP/88UJdf9MyZMwghmDJlirnM1JSO6kfTpk1DCMGpU6eIiooCYPbs2VhZWXHjjTfWS+Vpio6qU2uihUYyaEokbUxeXh4RERE4OTnxww8/AHUFBGpra9m7dy8BAQEaWyi5HLp27cqBAweoqanh0UcfBWDNmjVKQvbCwkKNLZRcDvKZJnVJom1sLCoNr0UidTJNUxrl5OTQp08fo0ohy5cv584772wr8yyCzuhHS5cuZfr06cp7X19f9u7di6+vb6P7dEadmosWGsmeJjSrekJnRupkmoY0ysvLw8fHh4CAACVgbty4ESFEpwuY0Dn96O6770YIwY8//gj8XWQiMDCQ/Pz8BvfpjDo1Fy00kkET+cBdLVIn01ysUWlpKZGRkfj4+CjB8vfff0cIwYgRI7QyUXM6sx+NGTMGIQSbN28GIDs7G29vb/r160d5eblR286sk1rkRCCNcHNz09qEdoHUyTRubm7U1tZyww034OrqqhSn/uWXXxBCcOWVV2psofZIP4IhQ4YghGDDhg0A7NmzB2dnZ2699Vb0ej0gdVKDFhrJoEld1XCJaaROpvnuu++wsbHh22+/BWDlypUIIRg+fLjGllkO0o/+ZuTIkUp6RIBVq1ZhbW3Nu+++K3VSgRYayaBJ3a88iWmkTo2TnJyMTqfjqaeeAuCFF15ACMGtt96qsWWWh/Sj+txxxx0IIZgzZw4Ajz32GE5OTuzcuVNjyywbLXxJBk2J5DIoLS3F09NTyf7Sr18/qqqqmDt3rraGSdolr776KlVVVSQlJQGQmJhIYGBgveedEu2QQRM6VLYVcyJ1Muall17C1dWVoqIiAI4fP8769euxtbXV1jALR/pR09ja2rJjxw6Sk5OBuslCzs7OvPHGGxpbZnlo4UsyaAK1tbVam9AukDrVcezYMXQ6nZLFZ/ny5Qgh6Natm9RIBVIjdQQGBiKEUEqTzZ49G51OR1ZWlqZ2WRJa+JIMmsCpU6e0NqFdIHWCKVOm0KNHDwDi4uKorq42WmspNTKN1EgdBp2mTp1KVVUV0dHRQF2+23vuuUdL0ywGLXxJBk2JRAWHDx9Gp9MpsxxTUlJITU2VGVskbYKtrS379u1j27ZtACxevBidTsfRo0c1tqzzIdPoAVVVVdjZ2WlthsXTWXV66KGHWLhwIQDjx4/nu+++Q6fTNdi2s2rUHKRG6mhMJyEEY8aM4eeffwbgkUce4d13321r8ywCLXxJ9jSBjIwMrU1oF3Q2nXJzc9HpdErATEtL4/vvv280YELn06glSI3U0ZhOOp2On376iR07dgDwn//8B51OpxQq70xo4UsyaAJlZWVam9Au6Ew6ffLJJ0oy7f79+1NbW0tsbKzJ/TqTRi1FaqQOUzolJSVRW1urPOvs0qULK1asaAvTLAYtfEkGTcDFxUVrE9oFnUEnIQRRUVFMnToVqCvptGvXLqys1H1VOoNGl4vUSB1qdLKysmLfvn18+eWXANx5553ExcW1uPB1e0MLX5LPNIHKykrs7e21NsPi6eg6nTp1iuDgYOV9cXFxs3NbdnSNWgOpkTqaq1NRURGenp7K+zNnznT42qxa+JLsaQLp6elam9Au6Mg6rVq1SgmYhpRmLUkG3ZE1ai2kRupork4eHh4IIbjllluAunWeX331lRkssxy08CUZNCWdnokTJyo5YtevX68sK5FI2iNffPGFUjDglltu6ZQ1W82JHJ6lbhgjMDBQazMsno6mU3V1tdF09XPnzuHj43NZx+xoGpkDqZE6LlcnQ6FrA9XV1R1uXbEWvmT2nubChQsJCwvDwcGB+Ph4fv/990bbTps2DZ1OV+9lmB0GsGzZsgbbXE4xUrWTPDo7HUmn06dPKwEzICAAvV5/2QETOpZG5kJqpI7L1cnX15fa2lq6dOkC1CVIOHv2bGuYZjFo4UtmPeOqVat4/PHHeeaZZ9i1axdXXXUVY8eO5cSJEw22f+edd8jOzlZeJ0+exMvLSxmjN+Dm5mbULjs7GwcHhxbbefz48Rbv25noKDr99ttvBAUFAfD4449z5syZJtdeNoeOopE5kRqpozV0srKyIi8vj/vvvx8Af39/JatQR0ALXzJr0HzrrbeYMWMG99xzD1FRUSxYsIDg4GAWLVrUYHt3d3f8/f2V186dOyksLOTuu+82aqfT6Yza+fv7m/MyJB2IRYsWMWTIEAC+/PJL3n77bY0tkkjMz6JFi/j8888BGDx4MEuWLNHYovaL2YJmVVUVqampjBo1ymj7qFGj2Lp1q6pjLF68mJEjR9Yr/1JaWkpISAhBQUGMHz+eXbt2NXmcyspKSkpKjF6VlZXK53379lV5VZ2b9q7TAw88wIMPPgjAvn37uPnmm1v9HO1do7ZAaqSO1tZp8uTJymzTGTNmMGvWrFY9vhZo4Utmeyqcl5dHbW2t0YNoAD8/P3Jyckzun52dzY8//shnn31mtD0yMpJly5bRp08fSkpKeOedd7jiiivYvXs3vXr1avBY8+fPZ968eUbbZs2axeTJkwFwdnZGr9dz4cIFXF1dCQsLUyqCh4SEoNfrOXnyJFCXHebIkSOUlpbi7OxMeHi4ErSDgoKwtrZWhgz69u1LVlYWJSUlODg4EB0dTWpqKlA3HdzBwYFjx44BEBMTw6lTpygqKsLOzo7+/fsr9fT8/f1xcXHhyJEjAERFRXH27FkKCgqwsbEhPj6e5ORkhBD4+Pjg6emppJeKiIigoKCA3NxcrKysSExMZOfOncqzDl9fXw4ePAhAr169KCkpUZ57DBgwgLS0NKqrq/H09KS8vFz5sdGjRw/Ky8vJzs4GICEhgX379lFRUYG7uzvdunVj7969AISGhlJTU6NUJIiLi+PQoUOUl5fj4uJCjx492L17NwDdunUDUIbw+/Xrx9GjRyktLcXJyYnIyEjS0tIUvW1sbJRSSX369OHEiRMUFxfj4OBATEwMO3fuBODhhx9W/v/TTz8REhJCRkYGhYWF2NraEhcXp6Ql8/Pzw83Njb/++kvR+9y5c+Tn52NtbU1CQgIpKSnKc1AvLy8OHz4M1D038vDwUFLwJSUlkZqaSk1NDV5eXvj5+Sl69+zZk9LSUuX7kJSURHp6OlVVVXh4eBAUFMS+ffsA6N69OxUVFZw5cwaA+Ph49u/fT0VFBW5uboSGhhr5bG1traJ3bGwsGRkZlJWV4eLiQs+ePZWbZ3BwMFZWVkY+m5mZyfnz53F0dCQqKkrRu2vXrtjZ2ZGZmanoffLkSYqKirC3t6dv376kpKQoPuvs7KwkFO/duzc5OTkUFBRQVlbG8OHDFb19fX1xd3dX9I6MjCQvL4+8vDzFZw16e3t74+3tzaFDhxSfLS4u5ty5c/V81svLC39/fw4cOKD4bFlZmaJ3YmIie/bsobKyEg8PD4KDgxWfDQsLo6qqitOnTys+e/DgwTa9Rwgh6NGjR6vfI5KTk0lKSmLBggX8+eef/Pzzz612jwgMDGT//v2K3ua+R5w/f54rr7zysu8RhiLyqhBm4vTp0wIQW7duNdr+8ssvi4iICJP7v/rqq6JLly6isrKyyXa1tbWiX79+4pFHHmm0TUVFhSguLjZ6VVRUKJ9v377dpD2S9qmTXq8XHh4eAhCASX+6XNqjRm2N1Egd5tTpwoULyneia9euZjuPudHCl8zW0/T29sba2rper/LSadANIYRgyZIlTJkyxWQGe8MvI8Ov1Iawt7dvMmuEo6Njk+eQ1NHedBJCGM2u0+v1rTbhpzHam0ZaIDVShzl1cnBwoLa2Fmtra06fPo1Op2uT70dro4Uvme2Zpp2dHfHx8WzYsMFo+4YNGxg8eHCT+27ZsoUjR44wY8YMk+cRQpCenn5Z6aKioqJavG9noj3pVFNTowTM0NBQhBBtckNoTxpphdRIHebWycrKCiGE0omxsrJCr9eb9ZytjRa+ZNbZs0888QQfffQRS5Ys4eDBg8yaNYsTJ04o05/nzJnDXXfdVW+/xYsXM2DAAGJiYup9Nm/ePH766SeOHTtGeno6M2bMID09XTlmSzCMf0uapr3oVFNTg62tLQADBw5UnsG1Be1FIy2RGqmjrXTKycmhf//+AFhbW1NTU9Mm520NtPAls6aHmDx5Mvn5+bz44otkZ2cTExPDDz/8oMyGzc7Orrdms7i4mNWrV/POO+80eMyioiJmzpxJTk4O7u7uxMbG8ttvv5GUlGTOS5G0Ey7O8jNq1Ch++uknjS2SSCyfXbt2MWTIEH777TdsbW2pqanB2tpaa7MsEplGj7rqFobF7pLGsXSdLu5hjh8/nu+//77NbbB0jSwBqZE6tNDpmmuuYePGjQDtInBqoZHMZwUmJxtJ6rBknfR6vRIwx40bp0nABMvWyFKQGqlDC502bNjAsGHDALCxsbH4upxaaCSDJrTpM6/2jKXqJIRQfhEPGTKEdevWaWaLpWpkSUiN1KGVTps2bSIhIQH4e7KQpaKFRjJoSto9hh5mdHQ0mzdv1tYYiaQDkJKSQmhoKFBXp1PyN/KZJlBeXo6Tk5PWZlg8lqhTnz592LdvHy4uLpw/f15rcyxSI0tDaqQOS9DJsEwrMTFRyT5kSWihkexpgpL+StI0lqbTbbfdpqSZKykp0diaOixNI0tEaqQOS9DJsG4zJSVF1br5tkYLjWTQpG4Zi8Q0lqTTa6+9plRtqK6utphMJpakkaUiNVKHJeik0+moqqoCYMmSJbz11lsaW2SMFhrJoAlNptiT/I2l6PT9998zZ84coK6HaUnV6C1FI0tGaqQOS9HJ1taWwsJCAP7xj3/w888/a2zR32ihkXymSd0QhKwmbxpL0CkjI4OIiAgAjh07RlhYmKb2XIolaGTpSI3UYWk6/fXXX4SHhwNw9OhRunfvrrFF2mhkOX8RDTGUM5I0jdY6lZaWKgFz06ZNFhcwQXuN2gNSI3VYmk69evXixx9/BOrKfl24cEFji7TRSAZNSbtACIGrqytQ9zzTsABbIpG0HWPGjFFqE2s9s1crZNCkroCrxDRa6mRIKH3VVVcxe/ZszewwhfQl00iN1GGpOj3//PPExsYCNK94sxnQQiMZNAFnZ2etTWgXaKXTG2+8wZ49ewD47bffNLFBLdKXTCM1Uocl65SamgpAcnIy//nPfzSzQwuNZNCk7qG2xDRa6LR7926lZ1leXt7m528u0pdMIzVShyXrpNPplLXRjz76KPv379fEDi00kkFTYrFUVlYqw7JpaWmaVGmXSCQN4+rqqmQJiomJobq6WmOL2gYZNIHevXtrbUK7oK11cnBwAOCll15SnqFYOtKXTCM1Ukd70CkxMVFZM234vrYlWmgkgyZ1lcslpmlLnQxDss7Ozjz77LNtdt7LRfqSaaRG6mgvOr366qtYW1uj1+t58cUX2/TcWmgkgyZQUFCgtQntgrbS6cCBA7zxxhuAZaQSaw7Sl0wjNVJHe9LJMN/ghRde4PDhw212Xi00kkGTv0tLSZqmLXTS6/VER0cDsGvXLotKkacG6UumkRqpoz3pZGdnx44dOwCIjIxssxqcWmgk0+hJLIrY2FjS09O5//77WbRokdbmSCSSZjBlyhQ+/fRTrrjiCv744w+tzTELsqcJyi8kSdOYW6f169eTnp4O0G4DpvQl00iN1NEedVq+fDkAf/75J5s2bTL7+bTQSAZNiUVQXV3N2LFjgfYzAUIikdTn1KlTAIwYMYKamhqNrWl9ZNAEfH19tTahXWBOnXr06AHA/Pnz8fPzM9t5zI30JdNIjdTRXnXq2rUrzz33HABRUVFmPZcWGslnmtTNwPLy8tLaDIvHXDqtX79e6WW2d3eUvmQaqZE62rtOhsLwmzZtMluBBS00kj1N6urESUxjDp30er0SMM+dO9fqx29rpC+ZRmqkjvau0+nTpwEYPny42X4Ma6GRDJoSTTH8An3yySfx8fHR2BqJRNJaBAYG8sgjjwAwbtw4ja1pPcweNBcuXEhYWBgODg7Ex8fz+++/N9p28+bN6HS6eq9Dhw4ZtVu9ejW9e/fG3t6e3r17s2bNmsuyMTIy8rL27yy0tk6HDx9Wqpa8+eabrXpsrZC+ZBqpkTo6gk7vvvsuUPcIxhzJ1bXQyKxBc9WqVTz++OM888wz7Nq1i6uuuoqxY8dy4sSJJvc7fPgw2dnZyqtXr17KZ9u2bWPy5MlMmTKF3bt3M2XKFCZNmnRZU4/z8vJavG9norV1Mjj83r17W/W4WiJ9yTRSI3V0FJ0MZcR69uzZ6sfWQiOzBs233nqLGTNmcM899xAVFcWCBQsIDg42uQbP19cXf39/5WVtba18tmDBAq655hrmzJlDZGQkc+bMYcSIESxYsKDFdnYU5zQ3ranT22+/DUCfPn2IiYlpteNqjfQl00iN1NFRdIqLi6N79+4AvP/++6167A4VNKuqqkhNTWXUqFFG20eNGsXWrVub3Dc2NpaAgABGjBjBr7/+avTZtm3b6h1z9OjRTR6zsrKSkpISo1dlZaXyuZWVfLSrhtbSqaamhieeeAL4+1doR0H6kmmkRuroSDoZ6m3ef//91NbWttpxtdDIbIk98/LyqK2trbfmzs/Pr9HF6wEBAXzwwQfEx8dTWVnJ8uXLGTFiBJs3b+bqq68G6ha+N+eYULf2b968eUbbZs2axeTJk4G6X0J79uzhwoULuLq6EhYWxp49ewAICQlBr9dz8uRJAPr378+RI0coLS3F2dmZ8PBwdu3aBUBQUBDW1tYcP34cgL59+5KVlUVJSQkODg5ER0crQSIwMBAHBweOHTsG1NWjO3XqFEVFRdjZ2dG/f3+lVp2/vz8uLi4cOXIEqFv7dPbsWQoKCrCxsSE+Pp7k5GSEEPj4+ODp6UlGRgYAERERFBQUkJubi5WVFYmJiezcuZPa2lq6dOmCr68vBw8eBKBXr16UlJRw9uxZAAYMGEBaWhrV1dV4enoSFRWlDIP36NGD8vJysrOzAUhISGDfvn1UVFTg7u5Ot27dlGHX0NBQampqlEXP//jHPwB48MEHycjIoEePHuzevRuAbt26AShD+P369ePo0aOUlpbi5OREZGQkaWlpit42NjZkZWUBdb3WEydOUFxcjIODAzExMezcuVPxLScnJ+W5SnR0NGfOnKGwsBBbW1vi4uKUa/Pz88PNzU2ZmRcVFcW5c+fIz8/H2tqahIQEUlJS0Ov1+Pj44OXlpSSpDg8P59ixY+Tm5qLT6UhKSiI1NZWamhq8vLzw8/NT9O7ZsyelpaWK7yYlJZGenk5VVRUeHh4EBQWxb98+ALp3705FRQVnzpwBID4+nv3791NRUYGbmxuhoaFGPltbW6voHRsbS0ZGBmVlZbi4uNCzZ08l81JwcDBWVlZGPpuZmcn58+dxdHQkKipK0btr167Y2dmRmZmp6H3y5EmKioqwt7enb9++pKSkKD7r7Oys6N27d29ycnIoKChQ8oUa9Pb19cXd3V3ROzIykry8PPLy8hSfNejt7e2Nt7e3Ms+hV69eFBcXKzOvL/ZZLy8v/P39OXDggOKzZWVlit6JiYns2bOHyspKPDw8CA4OVnw2LCyMqqoqZQZoXFwcBw8ebPN7RG5ubru6RwQGBioB8tJ7xAsvvMC8efO48sorWbp0aZP3iLi4OA4dOkR5eTkuLi5N3iMqKiou+x4xYMAAVCPMxOnTpwUgtm7darT95ZdfFhEREaqPM378eDFhwgTlva2trfjss8+M2nz66afC3t6+0WNUVFSI4uJio1dFRYXyeXJysmp7OjOtoVN2drYAhBldT1OkL5lGaqSOjqiT4bt/7ty5VjmeFhqZrW/r7e2NtbV1vR7guXPnmpXxZeDAgUZrcfz9/Zt9THt7e9zc3Ixe9vb2yud6vV61PZ2Z1tApICAAgC1btlz2sSwR6UumkRqpoyPqtGHDBqCuB9gaaKGR2YKmnZ0d8fHxikgGNmzYwODBg1UfZ9euXcqNFmDQoEH1jvnzzz8365iX4u3t3eJ9OxOXq9PFzy8Nw+0dDelLppEaqaMj6jRy5Eigbs5La8ya10IjsxYrfOKJJ5gyZQoJCQkMGjSIDz74gBMnTnD//fcDMGfOHE6fPs0nn3wC1M2MDQ0NJTo6mqqqKj799FNWr17N6tWrlWM+9thjXH311bz++utcf/31fPvtt2zcuPGyytB0ROc0B5erU0JCAoDyfKEjIn3JNFIjdXRUnTIyMggPD6dv376XnSlIC43MOvVo8uTJLFiwgBdffJH+/fvz22+/8cMPPxASEgJAdna20ZrNqqoqnnzySfr27ctVV13FH3/8wbp167jxxhuVNoMHD+bzzz9n6dKl9O3bl2XLlrFq1armPci9hEuTJ0ga5nJ0+vHHH4G6STaGv39HRPqSaaRG6uioOvXq1Qs3NzegLqHN5aCFRjJhO3Wz+C4n6HYWLkcnQ/LmgoICPD09W9Msi0L6kmmkRuroyDpdPA/lckKQFhp1nIVAl8HFGYckjdNSnb7++mugbplHRw6YIH1JDVIjdXRknXx9fZUMQT/88EOLj6OFRjJoAsXFxVqb0C5oqU433XQTUJeYoqMjfck0UiN1dHSdDGt6r7322hYfQwuNZNCkY5SkagtaotPatWuBukXFrq6urW2SxSF9yTRSI3V0dJ08PDyU3ubPP//comNooZEMmhKzMmHCBIAmq9tIJJLOiSEr1OjRozW2RD1yIpDEbGzbto3BgwcTFBSkpBiTSCSSi/H09KSoqIiUlBRlWZolI3uaoOQplDRNc3UyJJww5MfsDEhfMo3USB2dRSdDDt/ExMRm76uFRjJoAtXV1Vqb0C5ojk4Xr7+9OKNTR0f6kmmkRuroLDoFBwcr/zckd1eLFhrJoAl4eXlpbUK7oDk6DRo0COg8v5YNSF8yjdRIHZ1JJ0NpxyuvvLJZ+2mhkXymCZw/f75TzOy8XNTqVFlZiYODA3B5C5fbI9KXTCM1Ukdn08mQAKW6uhobG3UZXrXQSPY0Qam3J2katToZcgt/8MEH5jTHIpG+ZBqpkTo6m05vvfUWAI8++qjqfbTQSAZNSauzbNkyAO69915tDZFIJO2Gxx9/HIBFixZpa4gJZNCkrsK4xDRqdFq3bh0Ao0aNMrc5Fon0JdNIjdTR2XTS6XTKjPtff/1V1T5aaCSDJlBWVqa1Ce0CNTqNHz8egFWrVpnbHItE+pJppEbq6Iw6ffPNNwAMHz5cVXstNJJBE8jJydHahHaBKZ1KS0uV/3t4eJjZGstE+pJppEbq6Iw6+fj4KP+vqKgw2V4LjWTQlLQaDz74IAArV67U2BKJRNJe+eijj4C/n3FaGnLJCaDX67Gykr8fTGFKJ8OU8c7sUtKXTCM1Ukdn1UkIoVy3qXuJFhp1vr9IAxjSOEmapimd9u/fD0BkZGRbmWORSF8yjdRIHZ1VJ51Op2QJOnr0aJNttdBIBk3qFuNLTNOUTrfccgsAa9asaStzLBLpS6aRGqmjM+v0/fffA3/fVxpDC41k0KTzTlppLk3pdPDgQUD2NKUvmUZqpI7OrFO/fv0A2LVrV5PttNBIBk2MEwZLGqcxnQy1MseNG9eW5lgk0pdMIzVSR2fX6eqrrwZg586djbbRQiMZNIG9e/dqbUK7oDGdbr31VgA+/PDDtjTHIpG+ZBqpkTo6u04ff/wxAJMnT260jRYayaApuWzOnDkDQGBgoMaWSCSSjkJoaCgAx44d09aQS5BBEwgLC9PahHZBQzoZhk46a9q8S5G+ZBqpkTqkTn8Xsm9slqwWGsmgCVRVVWltQrugIZ3uuecewPKTLLcV0pdMIzVSh9QJFi9eDMDMmTMb/FwLjWTQBE6fPq21Ce2ChnTavXs3AN27d29rcywS6UumkRqpQ+r092z8HTt2NPi5FhrJoClpMXl5eYCc5SeRSMyHl5cXAIWFhRpbUofZg+bChQsJCwvDwcGB+Ph4ZXlCQ3z99ddcc801+Pj44ObmxqBBg/jpp5+M2ixbtgydTlfvpSa5b2PExcW1eN/OxKU6PfvsswD873//08Ici0T6kmmkRuqQOtWxcOFCAF5++eV6n2mhkVmD5qpVq3j88cd55pln2LVrF1dddRVjx47lxIkTDbb/7bffuOaaa/jhhx9ITU1l2LBhTJgwod4CVzc3N7Kzs41eDg4OLbbTsDBf0jSX6vT+++8Df5cDk0hfUoPUSB1SpzomTZoEwFtvvVXvMy00sjHnwd966y1mzJihTBZZsGABP/30E4sWLWL+/Pn12i9YsMDo/auvvsq3337L999/T2xsrLJdp9Ph7+/fanZeuHCh1Y7VkWlMJ0Oidon0JTVIjdQhdaqjqfuLFhqZradZVVVFampqvaUIo0aNYuvWraqOodfrOX/+vDKmbaC0tJSQkBCCgoIYP368yVRLlZWVlJSUGL0uzlno6uqq8qo6NxfrZBhmv+OOO7QyxyKRvmQaqZE6pE5/c8MNNwD10+ppoZHZepp5eXnU1tbi5+dntN3Pz0914dB///vflJWVKd1zqJtNtWzZMvr06UNJSQnvvPMOV1xxBbt376ZXr14NHmf+/PnMmzfPaNusWbOUTBO9e/dmz549XLhwAVdXV8LCwpR1QSEhIej1ek6ePAlA//79OXLkCKWlpTg7OxMeHq78IYOCgrC2tub48eMA9O3bl6ysLEpKSnBwcCA6OprU1FSgLhGAg4ODsnA3JiaGU6dOUVRUhJ2dHf379yc5ORkAf39/XFxcOHLkCABRUVGcPXuWgoICbGxsiI+PJzk5GSEEPj4+eHp6kpGRAUBERAQFBQXk5uZiZWVFYmIiO3fupLa2li5duuDr66sMcfTq1YuSkhLOnj0LwIABA0hLS6O6uhpPT098fX2VWWxz5swBYOLEiezYsYOEhAT27dtHRUUF7u7udOvWTcnWERoaSk1NDadOnQLqnkMcOnSI8vJyXFxc6NGjhzILt1u3bgDKEH6/fv04evQopaWlODk5ERkZSVpamqK3jY0NWVlZAPTp04cTJ05QXFyMg4MDMTExyjrSgIAAnJyclKoJ0dHRnDlzhsLCQmxtbYmLi1Ouzc/PDzc3N/766y9F73PnzpGfn4+1tTUJCQmkpKSg1+vx8fHBy8uLw4cPK/5y7NgxcnNz0el0JCUlkZqaSk1NDV5eXvj5+Sl69+zZk9LSUuX7kJSURHp6OlVVVXh4eBAUFMS+ffuAutnJFRUVSiKJ+Ph49u/fT0VFBW5uboSGhhr5bG1traJ3bGwsGRkZlJWV4eLiQs+ePUlPTwfqJnFZWVkZ+WxmZibnz5/H0dGRqKgoRe+uXbtiZ2dHZmamovfJkycpKirC3t6evn37kpKSoviss7Ozonfv3r3JycmhoKBA6TkY9Pb19cXd3V3ROzIykry8PPLy8hSfNejt7e2Nt7c3hw4dUny2uLiYc+fO1fNZLy8v/P39OXDgAAA9evSgrKxM0TsxMZE9e/ZQWVmJh4cHwcHBis+GhYVRVVWlzM6Mi4vj4MGDbXqP8Pb2Jjc3t13dIwIDA5WKRz169KC8vJzs7GyAy7pHPPvss3zzzTc8/PDDfPXVV0DdPaK2tpaKiorLvkcMGDAA1Qgzcfr0aQGIrVu3Gm1/+eWXRUREhMn9P/vsM+Hk5CQ2bNjQZLva2lrRr18/8cgjjzTapqKiQhQXFxu9KioqlM+3b99u0h6JsU6AMKP7tFukL5lGaqQOqZMxDd1ztNDIbD1Nb29vrK2t6/Uqz507V6/3eSmrVq1ixowZfPnll4wcObLJtoZfRoZfqQ1hb2+Pvb29euMlEolEImkAsz3TtLOzIz4+ng0bNhht37Bhg5IaqSFWrlzJtGnT+Oyzz7j22mtNnkcIQXp6OgEBAS22NSQkpMX7diYMOhmG4G6//XYtzbFIpC+ZRmqkDqmTMYbnmhen1NNCI7MuOXniiSf46KOPWLJkCQcPHmTWrFmcOHGC+++/H6h7LnbXXXcp7VeuXMldd93Fv//9bwYOHEhOTg45OTkUFxcrbebNm8dPP/3EsWPHSE9PZ8aMGaSnpyvHbAl6vb7lF9mJMOj0xhtvAPDPf/5TS3MsEulLppEaqUPqZMzs2bMB46Unmmhk7vHf//3vfyIkJETY2dmJuLg4sWXLFuWzqVOniiFDhijvhwwZooxbX/yaOnWq0ubxxx8X3bp1E3Z2dsLHx0eMGjWq3nPT5iKfHajDoBPyeWajSF8yjdRIHVInY/R6fb17T4d6pmngwQcf5MEHH2zws2XLlhm937x5s8njvf3227z99tutYJlEIpFI2guWsh5cJ4QQWhuhNZWVlXKikAoqKyvR6/U4OTkRHBzcaGanzoz0JdNIjdQhdapPly5dKCgooLq6GhsbG000kgnbQVnbJGmaI0eOsGbNGgDuu+8+ja2xTKQvmUZqpA6pU30MJcLWrl0LaKORDJrUZRiSmKa0tJQlS5YAMHXqVI2tsUykL5lGaqQOqVN9DClZP/roI0AbjWTQBJydnbU2oV3g7OzML7/8AtRl2pDUR/qSaaRG6pA61adHjx4ArFu3DtBGI/lMk7o8uXZ2dlqbYfFUVVUpzw+k2zSM9CXTSI3UIXVqGMOEICGEJhrJnib1kwBLGkbqZBqpkWmkRuqQOplGC41k0JSoxpBM2ZCZQyKRSNoaQ2pVQyL4tkYGTeTzObUYKhLIoNk40pdMIzVSh9SpYW666SYAvvnmG000kkETsLa21tqEdoEhj7CanMCdFelLppEaqUPq1DDjx48H6iYDaaGRDJqg1LaTNI2heLi3t7fGllgu0pdMIzVSh9SpYQy9yx9//FETjWTQlEgkEkm7Q6uE9nLJCXDhwgUcHR21NsPiuXiqt6RhpC+ZRmqkDqlT4xjuReXl5W2ukexpAllZWVqb0G6wlKTJlor0JdNIjdQhdTKNFhrJoAmUlJRobYLFc/78eYAmC4hLpC+pQWqkDqlT48THxwOQm5vb5ueWQRNwcHDQ2gSLJyUlBYBBgwZpbIllI33JNFIjdUidGicpKQlAk0pLMmgC0dHRWptg8aSlpQGQkJCgsSWWjfQl00iN1CF1apzExEQACgoK2vzcMmgCqampWptg8RjSVcXGxmpsiWUjfck0UiN1SJ0aJy4uDkApINGWyKApUcWePXuAv6sMSCQSiVZERkYCkJmZ2ebnlkETCAwM1NoEi+fQoUOAzFJiCulLppEaqUPq1DiGaksyaGqEfOBumpqaGq1NaBdIXzKN1EgdUifTyCLUGnHs2DGtTZB0EKQvmUZqpA6pk2Uig6ZEIpFIJCqRafSAsrIynJ2dtTbDopEp9NQhfck0UiN1SJ2aRqt7kuxp8ndxZYnkcpG+ZBqpkTqkTpaJDJpAUVFRs9pnZmYyZ84cxo4Zw7ixY5k3bx6nT582j3FtTHJyMvfddx+jRo7k+uuvZ9GiRUoKPYBNmzYxbdo0RowcyciRI4mJicHHxwdvbx8SExOVmpttgRCCjRs3ctdddzFi5EhuvvlmVqxYQWVlZZvZcCnN9aXOQnp6OlZWVuh0Oj755BN0Oh3W1tYcOXJEa9MsFulLFoqQiLS0NFXtamtrxT//+U+h0+mEm62tGO7iIoa5uAgnGxthbWUlXn31VaHX681srXkoKSkR48aOFYDo6uAgRrm4ioHOzsJKpxNuLi4CUF4OPsHCKeIKYRcYKQChs7EXdsExQmfvLADRp08fUVlZaVZ7z5w5I+LiE/7Pnm7CKeIK4RjcWwDCzz9A7Nixw6znbwy1vtSZCA0NFVhZC0DY+nYXjz39orD1DavzJytr0aNHD61NtEikLzWN4X7U1pj9mebChQt58803yc7OJjo6mgULFnDVVVc12n7Lli088cQT7N+/n8DAQP7f//t/3H///UZtVq9ezXPPPcfRo0fp0aMHr7zyChMnTmyxjUIIVdU7nn32WV595RVmeftwh6cnjlZ1HfXS2lo+LCjgw4J83n77bR5//PEW26IFer2e0aNGseO333jRx4eRLq5Y/58e2dXVvJqbyy/n65JH+05+GYeQfope1QWnyf/xHarOZeJ/+2tUnNxH4aaP6NevH+n/l0WotSkrKyMxaQDHTp/FY+wT2Hfr87c9+ScpXP8u1iWn2ZmcTEREhFlsaAy1vtRZGD9+POt+WI+Npz/eE/6JvX9PdAgEOiqzM8j77k1qSs5x08Qb+Oqrr7Q216KQvtQ0HfKZ5qpVq3j88cd55pln2LVrF1dddRVjx45tNMluZmYm48aN46qrrmLXrl08/fTTPProo6xevVpps23bNiZPnsyUKVPYvXs3U6ZMYdKkSezYsaPFdiYnJ5tsc/bsWd54/XUe6NKFe7p0UQImgIu1NbN8fLjdw4MXnn2OsrKyFtuiBT///DMbf/mFf/n5MdrVTQmYAAG2trwVEACAja0tjqH9jb7Itl5d8b15LtZO7hTv+Bq3hOvxGHI3u9PT+fPPP81i78cff8yhQ4fwumkeDiF9je3pEoz3zfOotnbklVdeNcv5m0KNL3Um1q1bh87GFr/b5mPv3xOAGRF1xYPtA8Lxu30+Oisbo++4pA7pS5aJWYPmW2+9xYwZM7jnnnuIiopiwYIFBAcHs2jRogbbv/fee3Tr1o0FCxYQFRXFPffcw/Tp0/nXv/6ltFmwYAHXXHMNc+bMITIykjlz5jBixAgWLFhgzkth2bJlWAvBFE+vRtvc7dWF82WlrFq1yqy2tDbvL1pElJMzVzo1PFPP9v+Cko21NVV59X/wWNk74Ro3nvLDf1JbXoxr7Fh0tg7MmTPHLPYufO99nHoNwM4npMHPreydcOw3ls9XrZLPhTQkPT0ddFa49BuNjUvD3xsbV29c+o4EK2tycnLa1kBJu8bGxkaT85otaFZVVZGamsqoUaOMto8aNYqtW7c2uM+2bdvqtR89ejQ7d+6kurq6yTaNHROgsrKSkpISo9fFk0X8/f1NXs+hQ4eIcnTEvYk0cl1tbQlxcuLgwYMmj2dJHNy/nyR7O5NDQbW1tVTnn2zwM4eQvqCvoaYoBys7R+wDI8y2ODvj0CHsgvs02cahWz+qqyrbPM2WGl/qLDz77LMg9Dh062u0fV+hsZ85dOsH+lqeeeaZtjTP4pG+1DRaZSkzW6jOy8ujtrYWPz8/o+1+fn6N/qLMyclpsH1NTQ15eXkEBAQ02qapX6nz589n3rx5RttmzZrF5MmTAQgNDWXPnj1cuHABV1dXwsLClATlISEh6PV6Bg4cSHhwMLVr11EwdAhVPj7Y5ufT5ZdN5Ey6BQDX1DR6enkSHR3Njh076Nu3L1lZWZSUlODg4EB0dLRSuSAwMBAHBwclsMTExHDq1CmKioqws7Ojf//+yvCMv78/Li4uykzDqKgozp49S0FBATY2NsTHx5OcnIwQAh8fHzw9PcnIyAAgIiKCgoICcnNzsbKyIjExkZ07d1JbW0uXLl3w9fVl2owZuFZWcmHbNir9/CmLqkuG3PXjT8i55WZqnZzg6acRQvDwiAisnWvZnK3D0w76dal7nvB+dhX33Xcfgf0DyK6p5VsXB+6/9X527NhBaGgoNTU1yhT6uLg4Dh06RHl5OS4uLvTo0YPdu3cD0K1bN+DvOnn9+vXj6NGjlJaW4uTkRGRkJLOfmo21RyC7a/VcqIUr/epsWJ1pxUBfPV2docDHg//a2pKXl8eOHTsICAjAycmJo0ePAnVll86cOUNhYSG2trbExcUpQ/x+fn64ubnx119/KXqfO3eO/Px8rK2tSUhIICUlBb1ej4+PD15eXhw+fFjZ99ixY+Tm5qLT6UhKSiI1NZWamhq8vLzw8/NTflT17NmT0tJSxXeTkpJIT0+nqqoKDw8PgoKC2LdvHwDdu3enoqKCM2fOAHVFePfv309FRQVubm6KDxt8tra2VtE7NjaWjIwMysrKcHFxoWfPnnW9QCA4OBgrKyuOHz8OQN++fcnMzOT8+fM4OjoSFRWllIXr2rUrdnZ2yg+RPn36cPLkSYqKirC3t6dv375K3VV/f3+ioqLo168fdv5hrMsX9PEShLkKrHWw/RzMiKhFB+yq9WRvr15cffXV7Nixg8jISPLy8sjLy1N81qC3t7c33t7eSi7kXr16UVxczLlz5wAYMGAAaWlpVFdX4+Xlhb+/PwcOHADqig2UlZUpeicmJrJnzx4qKyvx8PAgODiYvXv3AhAWFkZVVZUyKz4uLo6DBw82eY84ebLuB2X//v05cuQIpaWlODs7Ex4erlQJCgoKwtra2kjvxu4Rbm5u5ObmWsQ9wuCzvXr1oqSkhLNnz9bT29PTk8DAQPbv36/oXV5eTnZ2NlBXVnDfvn1UVFTg7u5Ot27dFL1bco8wUFFRUe8eYfDZoKAgbGxsyMrKUnz2xIkTFBcX4+DgQExMDDt37mTAgAGoxWwTgc6cOUPXrl3ZunWrUeHiV155heXLlytOfzHh4eHcfffdRsN6f/75J1deeSXZ2dn4+/tjZ2fHxx9/zG233aa0WbFiBTNmzKCioqJBWyorK+stQ7C3t1eS/u7YscOkaMuXL+euu+7ih7DuhNrZNdgm/cIFbj9xnB9//JExY8Y0eTxL4qGHHuKLxYvZGBKKXSO9zd6HD+Hg4ID3PR9i7exZ7/OCXz6kbP+vBD24jNryYk4vms5tt93KZ5991ur2jhk7lt/2HMN3yluNtinY8B52J3Zw5vQp7Br5e5kDNb7UWSgtLcXV3QPHnkn4Tvy7F3lPRC0fHf57xObcVy9yITMVUSvzG1+M9KWmsbGxoba2tuNMBPL29sbauv5zinPnztXrKRrw9/dvsL2NjQ1dunRpsk1jx4S6AOnm5mb0MgRMtdxyyy14e3ryr7w8ahv4I1Xp9bxdkE+PkJB6w8eWzoMPPkheZSVLCvIb/Pzs/w2NV9fUNBgwq/JOULrnZ1z6XgPWNhRuXgY6ndGz6Nbk4Yce4sKZDMoObGnw86rcLC7s/4X775vZpgFTYoyLiwvoa7nw13YqTuxtsM2F47u5cDQF9LVtbJ2kvVNbq43PmC1o2tnZER8fX2+x+4YNGxg8eHCD+wwaNKhe+59//pmEhARsbW2bbNPYMdUQFRVlso2DgwOLly1jS1kpM8+cJrm8DCEEeiH4vayUaWdOs6eqiiWffIKVVfvKGREdHc3zzz/Pu3l5PJeTzZH/65VX6PV8U1zMnWfqhqhqa2oo/HUJNcV1QzP6ynLOp63l7GezsXH3w75bX859NY/yg1t45OGHzFba6Nprr+XOO6eQv+4tCjcvpabk3P/ZU0bJzu/I+3wOURHhzJ492yznbwo1vtSZqPuu6jj7xfMUb/uC2vJivj9hRW1ZIUVbP+fcly+ATscff/yhtakWh/QlC8Wci0A///xzYWtrKxYvXiwOHDggHn/8ceHs7CyysrKEEEI89dRTYsqUKUr7Y8eOCScnJzFr1ixx4MABsXjxYmFrayu++uorpc2ff/4prK2txWuvvSYOHjwoXnvtNWFjYyO2b9/eYjszMjJUt12/fr2I6NVLAMLRxkbYW9ct2u4bEyP++OOPFtugNXq9Xrz77rvCt0sXAQgXW1tho7MSgBg9apSykNjF1U0AwtreSaDT1W3XWQmsbQUgbOzsxZw5c8xub01NjXjmmWeEs6tr3XkdnIXOylpY29iIW2+7TRQWFprdhoZoji91Fj7++OP/85M6f5l4081G77/44gutTbRIpC81DR05ucEbb7xBdnY2MTExvP3221x99dUATJs2jaysLDZv3qy037JlC7NmzVKSG8yePbtecoOvvvqKZ599lmPHjinJDW688cYW29jcZwdCCLZs2UJ6ejo6nY4BAwYwYMCADrEQuaqqirVr15KZmYmjoyOjRo2iZ8+eyrWVlpby3Xffcfr0adzc3CgvL+f333+ntraWwYMH88QTT7TpVHCDPWfOnMHNzY0JEyYQ8H/rSrVAPodqnBkzZrBkyRKefvppXn31VR555BHeffddrc2yWKQvNY1WyQ1klRMgNTWV+Ph4rc2waGSVE3VIXzKN1EgdUqemkUFTYtHIoCmRSCyJDplGr70g01VJWgvpS6aRGqlD6mSZyKCJ7D1JWg/pS6aRGqlD6mSZyKAJ+Pj4aG2CpIMgfck0UiN1SJ0sExk0AU/P+gv2Jca4ublpbUK7QPqSaaRG6pA6mUaL/LwyaIKSg1HSOIaF1o2lKpTUIX3JNFIjdUidGsdQvSg4OLjNzy2DpkQV/fv3B1ASiEskEolWXJwUvq2RQZO6LP+SpomNjQVQqjVIGkb6kmmkRuqQOjXOzp07ARg6dGibn1sGTaCgoEBrEyyehIQE4G9nlTSM9CXTSI3UIXVqHMNyHNnT1Ijc3FytTbB4+vXrB9SVapM0jvQl00iN1CF1ahxD7VtnZ+c2P7cMmtDuqpJogSGfrOFZgqRhpC+ZRmqkDqlT4xiKybdlnmsDMo2eRDUylZ5EIrEEtLwXyZ8yyOd0ktZD+pJppEbqkDqZRguNZNBEuwrg7Q0HBwdA9jSbQvqSaaRG6pA6NYzh/uPr66uJRjJoAl26dNHahHbBsGHDAPjrr780tsRykb5kGqmROqRODbNnzx4Axo4dq4lGMmhS94tFYpqJEycC8N1332lsieUifck0UiN1SJ0a5ttvvwVgwoQJmmgkgyZw8OBBrU1oF4SEhACwZs0ajS2xXKQvmUZqpA6pU8OsXr0agDFjxmiikQyaEtW4u7sDsHXrVo0tkUgknRXD8KwWazRBLjkB6jJveHl5aW2GxVNQUKA8Q5Bu0zDSl0wjNVKH1KlhLl5uooVGsqcJlJSUaG1Cu+BinWTQbBjpS6aRGqlD6lQfw33HMJNfC41k0ATOnj2rtQntgrNnzzJ16lQAUlNTNbbGMpG+ZBqpkTqkTvX5448/ALjrrrsAbTSSQVPSLO6++24AlixZorElEomks/HBBx8AMHPmTM1skM80Jc1CCKHkxJSuI5FI2hJLSOUpe5pAWlqa1ia0C9LS0hSnlTSM9CXTSI3UIXUyjRYayaAJVFdXa21Cu+BSnfR6vUaWWC7Sl0wjNVKH1MkYgx6urq71trUlZg2ahYWFTJkyBXd3d9zd3ZkyZQpFRUWNtq+urmb27Nn06dMHZ2dnAgMDueuuuzhz5oxRu6FDh6LT6Yxet956a4vt9PT0bPG+nQmDTv/85z8BmRmoIaQvmUZqpA6pkzGGpAazZs1StmmhkVmfaY4dO5ZTp04ZPbwNDQ3l+++/b7B9cXExN998M/feey/9+vWjsLCQxx9/nJqaGqNs9kOHDiU8PJwXX3xR2ebo6Kgsvm8upaWluLi4tGjfzoRBp9OnTxMUFMSgQYNkooNLkL5kGqmROqROxvTr1489e/Zw9uxZJX2eJhoJM3HgwAEBiO3btyvbtm3bJgBx6NAh1cdJTk4WgDh+/LiybciQIeKxxx5rNVsvtlHSOBfrBAgzuk+7RfqSaaRG6pA6GdPQPUcLjcw2PLtt2zbc3d0ZMGCAsm3gwIG4u7s3q3dSXFyMTqfDw8PDaPuKFSvw9vYmOjqaJ598kvPnz7eW6ZJmIOQMWolEYmYs6T5jtqCZk5PTYAZ6X19fcnJyVB2joqKCp556ittvvx03Nzdl+x133MHKlSvZvHkzzz33HKtXr+bGG29s9DiVlZWUlJQYvSorK5XPe/To0Ywr67xcrNOMGTMA+PXXX7UyxyKRvmQaqZE6pE5/Y3ik99hjjxlt10Ijm+buMHfuXObNm9dkm5SUFIAGlycIIVQtW6iurubWW29Fr9ezcOFCo8/uvfde5f8xMTH06tWLhIQE0tLSiIuLq3es+fPn17N51qxZTJ48GagL5GfOnOHChQu4uroSFhamJAUOCQlBr9dz8uRJAPr378+RI0coLS3F2dmZ8PBwdu3aBUBQUBDW1tYcP34cgL59+5KVlUVJSQkODg5ER0crmXQCAwNxcHDg2LFjynWcOnWKoqIi7Ozs6N+/P8nJyQD4+/vj4uLCkSNHAIiKiuLs2bMUFBRgY2NDfHw8ycnJCCHw8fHB09OTjIwMACIiIigoKCA3NxcrKysSExPZuXMntbW1dOnSBV9fX6VSQK9evSgpKVGybAwYMIC0tDSqq6uVB+5Hjx4F4OGHH2bx4sU88sgjLFmyhISEBPbt20dFRQXu7u5069aNvXv3AhAaGkpNTQ2nTp0CIC4ujkOHDlFeXo6Liws9evRg9+7dAHTr1g2AEydOAHXPMY4ePUppaSlOTk5ERkYq08yDgoKwsbEhKysLgD59+nDixAmKi4txcHAgJiZGeRYeEBCAk5OTYn90dDRnzpyhsLAQW1tb4uLi2LFjBwB+fn64ubkpdUOjoqI4d+4c+fn5WFtbk5CQQEpKCnq9Hh8fH7y8vDh8+DAAbm5ulJSUkJubi06nIykpidTUVGpqavDy8sLPz0/Ru2fPnpSWlio/IpOSkkhPT6eqqgoPDw+CgoLYt28fAN27d6eiokKZFBcfH8/+/fupqKjAzc2N0NBQI5+tra1V9I6NjSUjI4OysjJcXFzo2bMn6enpAAQHB2NlZWXks5mZmZw/fx5HR0eioqIUvbt27YqdnR2ZmZmK3idPnqSoqAh7e3v69u2rfPf9/f1xdnZW9O7duzc5OTkUFBRQVVXFVVddpejt6+uLu7u7ondkZCR5eXnk5eUpPmvQ29vbG29vbw4dOqT4bHFxMefOnavns15eXvj7+3PgwAGg7gZbVlam6J2YmMiePXuorKzEw8OD4OBgxWfDwsKoqqri9OnTis8ePHiwTe8R9vb2CCHa1T0iMDCQ/fv3K3qXl5eTnZ0NcFn3iDlz5gAwatQo5XgnTpygvLycQYMGXfY94uIRUVM0eyKQwZmbIjQ0lM8++4wnnnii3mxZDw8P3n77bSWzTENUV1czadIkjh07xqZNm0wWGhVCYG9vz/Lly5VAeDGVlZVGPUuoc0h7e3sAduzY0SzROiuX6mQJC40tDelLppEaqUPq9DeN3Wu00KjZPU3DLz1TDBo0iOLiYpKTk0lKSgLqLrC4uJjBgwc3up8hYP7111/8+uuvqipz79+/n+rqagICAhr8/OIAKWl9Kisrpb4SicQslJWVAdqVAquHOWcZjRkzRvTt21ds27ZNbNu2TfTp00eMHz/eqE1ERIT4+uuvhRBCVFdXi+uuu04EBQWJ9PR0kZ2drbwqKyuFEEIcOXJEzJs3T6SkpIjMzEyxbt06ERkZKWJjY0VNTU2L7Gzpfp2NS3VasGCBAMTrr7+ukUWWh/Ql00iN1CF1qmPu3LkCEB988EG9z7TQyKxBMz8/X9xxxx3C1dVVuLq6ijvuuEMUFhYaGwBi6dKlQgghMjMzlWnFl75+/fVXIYQQJ06cEFdffbXw8vISdnZ2okePHuLRRx8V+fn5LbYzPT29xft2Ji7VqaqqSi49uQTpS6aRGqlD6lSH4R7TUIDUQqNmD882By8vLz799NMm24iLxqhDQ0NNPh8LDg5my5YtrWKfgYqKilY9XkflUp1sbW01ssRykb5kGqmROqROxvHB2tq63udaaCRzz0KLMwl1NhrS6Y477gDg559/bmtzLBLpS6aRGqlD6vT3UhPDErdL0UIjWRoMKC8vx8nJSWszLJ6GdDp79iz+/v4EBATUyxHcGZG+ZBqpkTqkTnVLuM6fP09+fj5eXl71PtdCI9nTBGWtkKRpGtLJz88PQFk71dmRvmQaqZE6pE4omd4aCpigjUYyaEoum3HjxgHw559/amyJRCLpKGzcuBGAiRMnamyJMXJ4lrohRkOPSdI4jel06tQpgoOD5RAt0pfUIDVSR2fXyTA0e3FVk0vRQiPZ0wRqamq0NqFd0JhOQUFBgByiBelLapAaqaMz6ySEUIZmGwuYoI1GMmiCku9Q0jRN6WSYRbtmzZq2Mscikb5kGqmROjqzTitWrADgnnvuabKdFhrJoClpFf73v/8BNFltRiKRSNQwZcoUABYsWKCtIQ0gn2lSl+9WLtQ3jSmdDEmVq6qqOq2e0pdMIzVSR2fVqaKiAkdHR8B0MQgtNJI9TVDKDEmaxpRO77zzDgCzZ89uC3MsEulLppEaqaOz6vToo48CsHjxYpNttdBIBk3qFshKTGNKp0ceeQSAt99+uy3MsUikL5lGaqSOzqrThx9+CMD06dNNttVCIxk0ARcXF61NaBeY0kmn0ymV1A0Fejsb0pdMIzVSR2fUyVCYPCYmRlV7LTSSzzSpG0N3cHDQ2gyLR41OR48epWfPnri6ulJSUtJGllkO0pdMIzVSR2fUycrKCiEEp06domvXribba6GR7GkCu3fv1tqEdoEanQw9zfPnz1NZWWlukywO6UumkRqpo7PpVF5erkz8URMwQRuNZNCUtDqGZxIzZ87U2BKJRNJeMCwz+eyzzzS2pGnk8Cx1mWwCAgK0NsPiaY5OhuUnnc29pC+ZRmqkjs6mU0vuGVpoJHuaErNw2223AeqmjUskks7Nu+++C8C0adO0NUQFMmgCJ06c0NqEdkFzdFq6dClgOg1WR0P6kmmkRuroTDo99thjwN+PdtSihUYyaErMgr29PREREQBs3rxZW2MkEonF8tNPPwHQr18/bGxsNLbGNPKZJp1zandLaK5OeXl5+Pj4AJ3n2ab0JdNIjdTRWXQyPMssKCjA09OzWfvKJScacfToUa1NaBc0Vydvb2/s7OwASE9PN4NFlof0JdNIjdTRGXRKSUkBwNPTs9kBE7TRSAZNoLS0VGsT2gUt0SkjIwOA2NjY1jbHIpG+ZBqpkTo6g05JSUlAyzOIaaGRDJqAk5OT1ia0C1qiU0hIiPL/vXv3tqY5Fon0JdNIjdTR0XVKTU0FwM7OTilk31y00Eg+06TzluBpLi3V6dixY0qmoI7ubtKXTCM1UkdH18nwLPPEiRMEBwe36BiyNJhGpKWlaW1Cu6ClOnXv3l35giQnJ7emSRaH9CXTSI3U0ZF1+u233wBwdnZuccAEbTSSQVPSJhw/fhyAAQMGaGyJRCLRmiFDhgDtc7KTWYNmYWEhU6ZMwd3dHXd3d6ZMmUJRUVGT+0ybNg2dTmf0GjhwoFGbyspKHnnkEby9vXF2dua6667j1KlTLbazpePpnY3L0Sk4OFjZ/7vvvmstkywO6UumkRqpo6PqtGrVKgB69uyJn5/fZR1LC43MGjRvv/120tPTWb9+PevXryc9PV1JytsUY8aMITs7W3n98MMPRp8//vjjrFmzhs8//5w//viD0tJSxo8fT21tbYvsbA8Lai2By9Vp3759AFx//fWtYY5FIn3JNFIjdXRUnW699VYAdu3addnH0kIjswXNgwcPsn79ej766CMGDRrEoEGD+PDDD1m7di2HDx9ucl97e3v8/f2Vl5eXl/JZcXExixcv5t///jcjR44kNjaWTz/9lL1797Jx48YW2ZqVldWi/Tobl6uTu7s748ePB+Dll19uBYssD+lLppEaqaMj6vT0008DcNNNN7VKAWktNDJb0Ny2bRvu7u5Gz7AGDhyIu7s7W7dubXLfzZs34+vrS3h4OPfeey/nzp1TPktNTaW6uppRo0Yp2wIDA4mJiWn0uJWVlZSUlBi9OmOtR0vgm2++AeC5556jurpaW2MkEkmbUVlZyfz58wH44osvNLam5Zitb5uTk4Ovr2+97b6+vuTk5DS639ixY7nlllsICQkhMzOT5557juHDh5Oamoq9vT05OTnY2dnVyx7h5+fX6HHnz5/PvHnzjLbNmjWLyZMnAxAVFcWePXu4cOECrq6uhIWFKYttQ0JC0Ov1nDx5EoD+/ftz5MgRSktLcXZ2Jjw8XBlmCAoKwtraWpn00rdvX7KysigpKcHBwYHo6GhlbVJgYCAODg4cO3YMgJiYGE6dOkVRURF2dnb0799fmWnq7++Pi4sLR44cUew9e/YsBQUF2NjYEB8fT3JyMkIIfHx88PT0VJIKREREUFBQQG5uLlZWViQmJrJz505qa2vp0qULvr6+HDx4EIBevXpRUlLC2bNngbpJO2lpaVRXV+Pp6Un37t3ZsWMHUFdsury8nOzsbAASEhLYt28fFRUVuLu7061bN2VdZmhoKDU1Ncpz59dff53Zs2cTGxvLqlWr6NGjh1JMtlu3bsDfiZj79evH0aNHKS0txcnJicjISGXGXFBQEDY2NsqvzT59+nDixAmKi4txcHAgJiaGnTt3AhAQEICTk5My8SA6OpozZ85QWFiIra0tcXFxyrX5+fnh5ubGX3/9peh97tw58vPzsba2JiEhgZSUFPR6PT4+Pnh5eSmjJ926dePYsWPk5uai0+lISkoiNTWVmpoavLy88PPzU/Tu2bMnpaWlit8mJSWRnp5OVVUVHh4eBAUFKUPa3bt3p6KigjNnzgAQHx/P/v37qaiowM3NjdDQUCOfra2tVfSOjY0lIyODsrIyXFxc6Nmzp5KhKTg4GCsrKyOfzczM5Pz58zg6OhIVFaXo3bVrV+zs7MjMzFT0PnnyJEVFRdjb29O3b18lw4u/vz/Ozs6K3r179yYnJ4eCggJlJrVBb19fX9zd3RW9IyMjycvLIy8vT/FZg97e3t54e3tz6NAhxWeLi4uVH9YX+6yXlxf+/v4cOHBA8dmysjJF78TERPbs2UNlZSUeHh4EBwcrPhsWFkZVVRWnT58GIC4ujoMHD7bpPcLb25vc3Nx2dY8IDAxk//79it4X3yPuu+8+AJ588kkyMjKavEfExcVx6NAhysvLcXFxafQeUVNTQ0VFxWXfI5o1QVE0kxdeeEEATb5SUlLEK6+8IsLDw+vt37NnTzF//nzV5ztz5oywtbUVq1evFkIIsWLFCmFnZ1ev3ciRI8V9993X4DEqKipEcXGx0auiokL5/ODBg6rt6cy0pk4GX8nMzGy1Y1oC0pdMIzVSR0fS6fDhw8p3vjXRQqNm9zQffvhh5UFuYxh+9Rp+jVxMbm5us2ZMBQQEEBISovwK9ff3p6qqisLCQqPe5rlz5xg8eHCDx7C3t8fe3r7RcxQXF6u2pzPTmjqlpKSQmJhIWFhYh0p4IH3JNFIjdXQknQwVj1qaLq8xtNCo2c80vb29iYyMbPLl4ODAoEGDKC4uNlrMvmPHDoqLixsNbg2Rn5/PyZMnlerc8fHx2NrasmHDBqVNdnY2+/bta9ZxL6YzVBJoDVpTp4SEBGWY5f3332+142qN9CXTSI3U0VF0WrBgAVD3OKJPnz6temwtNDJrGr2xY8dy5swZ5aY4c+ZMQkJC+P7775U2kZGRzJ8/n4kTJ1JaWsrcuXO56aabCAgIICsri6effpoTJ05w8OBBXF1dAXjggQdYu3Yty5Ytw8vLiyeffJL8/HxSU1OxtrZutp21tbUt2q+z0do6VVRU4OjoqPy/qdGA9oL0JdNIjdTREXS6cOGCkh+2srJSqXrUWmihkVnXaa5YsYI+ffowatQoRo0aRd++fVm+fLlRm8OHDytdbGtra/bu3cv1119PeHg4U6dOJTw8nG3btikBE+Dtt9/mhhtuYNKkSVxxxRU4OTnx/ffft1g8w2QRSdO0tk4ODg68++67AEpu2vaO9CXTSI3U0RF0MiQf+OCDD1o9YII2GsmE7dQNG8v0bqYxl06G2ZQbN25kxIgRrX78tkT6kmmkRupo7zqtW7dOWZdtrjCjhUYy9ywoz0slTWMunQxT0keOHNnirE6WgvQl00iN1NGedaqpqVECZm5urtnOo4VGMmjS8evWtRbm0snf3585c+YA7b9YtfQl00iN1NGederVqxcAL7zwAt7e3mY7jxYayaBJ+8y0rwXm1OnVV18F6gpVr1+/3mznMTfSl0wjNVJHe9Xpu+++U5IJzJ0716zn0kIjGTQlFoMhU8vYsWNlmkOJpB1SXl6uFGQw57CslsigSV1KNYlpzK2Tn58fb775JkCrJHPWAulLppEaqaM96uTs7AzAf//7X7MOyxrQQiMZNEHJ5ylpmrbQ6cknnwTqJhL8+9//Nvv5WhvpS6aRGqmjvelkqFxkb2/PQw891Cbn1EIjGTSpK5YtMU1b6XThwgWgLoAakoO3F6QvmUZqpI72pFNGRgbPPfccACUlJW12Xi00kkETsLW11dqEdkFb6eTg4MCWLVuAuuoeer2+Tc7bGkhfMo3USB3tRafa2lolt+z27dvNksSgMbTQSCY3kFgsM2bMYMmSJYSEhHTIgrwSSUfA29ub/Px8HnjgARYuXKi1OWZH9jT5u66fpGnaWqfFixcDcPz4cV5//fU2PXdLkb5kGqmROtqDTi+99BL5+fkAmgRMLTSSQVNi0ZSXlwPw1FNPKYV8JRKJ9mzfvp3nn38eqCu40FmQQROaVd+zM6OFTo6OjkoV9ri4OM6fP9/mNjQH6UumkRqpw5J1Ki4uZtCgQQDs27dPswpFWmgkgybg5uamtQntAq10io2N5Z133lFssOTH8NKXTCM1Uoel6iSEwMPDA4BFixZpup5UC41k0AT++usvrU1oF2ip06OPPsqQIUOAuhm1lor0JdNIjdRhqTr5+/sDMH78eO6//35NbdFCIxk0Je2GzZs3A5CVldVmi6clEsnfTJs2jXPnzgHw/fffa2yNNsglJ9QtxrXUoRBLwhJ0qq6uVtaBLV68mOnTp2tqz6VYgkaWjtRIHZam0/vvv6/0LKurq7GxsdHYIm00kj1NUH45SZrGEnSytbVV7JgxYwZ//vmnxhYZYwkaWTpSI3VYkk6bNm1SAmZ+fr5FBEzQRiMZNEFZZyRpGkvRycfHh927dwNw5ZVXcuTIEY0t+htL0ciSkRqpw1J0Onz4MCNGjABg//79eHl5aWzR32ihkQyagLW1tdYmtAssSae+ffsqz1R69epFXl6exhbVYUkaWSpSI3VYgk45OTlERkYC8NNPP9G7d2+NLTJGC43kM01Ju2bRokU8+OCDAJw/f77dlhSTSCyNkpIS3N3dAfjoo4+YMWOGxhZZBrKnCaSkpGhtQrvAEnV64IEHePrppwFwdXWlqqpKU3ssUSNLQ2qkDi11unDhghIw582bZ7EBUwuNZNCEdlVFQ0ssVadXXnlFmUVrb29PdXW1ZrZYqkaWhNRIHVrpVFVVhZOTEwAPPvigkirPEtFCIxk0qZtYIjGNJeu0ePFiJk6cCICdnR21tbWa2GHJGlkKUiN1aKFTdXW1khLv1ltv5X//+1+b29ActNBIBk2wqNlgloyl6/T1118zevRoAGxsbKipqWlzGyxdI0tAaqSOttbp4jXQN9xwAytXrmzT87cELXxJBk3qplRLTNMedFq/fj2jRo0C6tZ0tvUzzvagkdZIjdTRljpVVFQoAXPChAmsWbOmzc59OWjhSzJoSjocP/30E+PHjwfqnnEayotJJJL6lJWV4ejoCMAtt9zCd999p7FFlo1Zg2ZhYSFTpkzB3d0dd3d3pkyZQlFRUZP76HS6Bl9vvvmm0mbo0KH1Pr/11ltbbGd4eHiL9+1MtCedvv/+e+644w4AnJ2dKSwsbJPztieNtEJqpI620CkvL09ZpjV9+nS++OILs5+zNdHCl8waNG+//XbS09NZv34969evJz09nSlTpjS5T3Z2ttFryZIl6HQ6brrpJqN29957r1G7999/v8V2ttUNtb3T3nT69NNPeeyxx4C6Zx8nTpww+znbm0ZaIDVSh7l1ysrKUibSPPXUUyxevNis5zMHWviS2YLmwYMHWb9+PR999BGDBg1i0KBBfPjhh6xdu7bJcWh/f3+j17fffsuwYcPqlYNycnIyamdYU9QScnNzW7xvZ6I96rRgwQJllCIkJIRdu3aZ9XztUaO2RmqkDnPqtGPHDsLCwgB45513mD9/vtnOZU608CWzBc1t27bh7u7OgAEDlG0DBw7E3d2drVu3qjrG2bNnWbduXYMLa1esWIG3tzfR0dE8+eSTnD9/vtHjVFZWUlJSYvSqrKxUPtfpdM24ss5Le9XpySef5PPPPwcgLi6Or7/+2mznaq8atSVSI3WYS6dVq1YxcOBAANasWcOjjz5qlvO0BVr4ktlS1efk5ODr61tvu6+vLzk5OaqO8fHHH+Pq6sqNN95otP2OO+4gLCwMf39/9u3bx5w5c9i9ezcbNmxo8Djz589n3rx5RttmzZrF5MmTgbob6Z49e7hw4QKurq6EhYWxZ88eoK53otfrOXnyJAD9+/fnyJEjlJaW4uzsTHh4uNJ7CQoKwtramuPHjwN1+VGzsrIoKSnBwcGB6OhoUlNTAQgMDMTBwYFjx44BEBMTw6lTpygqKsLOzo7+/fuTnJwM1PW+XVxclMTkUVFRnD17loKCAmxsbIiPjyc5ORkhBD4+Pnh6epKRkQFAREQEBQUF5ObmYmVlRWJiIjt37qS2tpYuXbrg6+vLwYMHgbocriUlJZw9exaAAQMGkJaWRnV1NZ6envTu3ZsdO3YA0KNHD8rLy8nOzgYgISGBffv2UVFRgbu7O926dWPv3r0AhIaGUlNTw6lTpxS9Dx06RHl5OS4uLvTo0UNJwN6tWzcAZSi1X79+HD16lNLSUpycnIiMjCQtLU3R28bGhqysLAD69OnDiRMnKC4uxsHBgZiYGHbu3AnAoEGD+PHHHxk7diw33XQTc+bMYdq0aRQWFmJra0tcXJxybX5+fri5uSkFbqOiojh37hz5+flYW1uTkJBASkoKer0eHx8fvLy8lNGT8PBwjh07Rm5uLjqdjqSkJFJTU6mpqcHLyws/Pz9F7549e1JaWqp8H5KSkkhPT6eqqgoPDw+CgoLYt28fUFd4u6KigjNnzgAQHx/P/v37qaiowM3NjdDQUCOfra2tVfSOjY0lIyODsrIyXFxc6NmzJ+np6QAEBwdjZWVl5LOZmZmcP38eR0dHoqKiFL27du2KnZ0dmZmZit4nT56kqKgIe3t7+vbtq2Ro8ff3x9nZmaNHjwLQu3dvcnJyKCgowNbWFkDR29fXF3d3d0XvyMhI8vLyyMvLU3zWoLe3tzfe3t4cOnRI8dni4mKl2sXFPuvl5YW/vz8HDhxQfLasrEzROzExkT179lBZWYmHhwfBwcGKz4aFhVFVVcXp06cVnz148GCb3yNyc3Nb9R7x3//+l+XLlwOwZMkSAgICKCoqarV7RGBgIPv371f0bot7REVFxWXfIy7u3JlENJMXXnhBAE2+UlJSxCuvvCLCw8Pr7d+zZ08xf/58VeeKiIgQDz/8sMl2O3fuFIBITU1t8POKigpRXFxs9KqoqDDaX2KajqDT8ePHFT+98sorW/34HUEjcyM1Ukdr65SYmKj4/unTp1v12FqhhS81u6f58MMPm5ypavjVa/g1cjG5ubn4+fmZPM/vv//O4cOHWbVqlcm2cXFx2Nra8tdffxEXF1fvc3t7eyXLRUNosQi+PdIRdOrWrRvl5eU4OTnxxx9/oNPpqKysVNaoXS4dQSNzIzVSR2vpVFlZiYODg/L+woULRu/bM1r4UrODpmF4xBSDBg2iuLiY5ORkkpKSgLrhmOLiYgYPHmxy/8WLFxMfH0+/fv1Mtt2/fz/V1dUEBASYvoAGkBlK1NFRdHJ0dESv19OjRw8yMzOxt7fn2LFjysSIy6GjaGROpEbqaA2dMjIyiIiIAOqGJg1Dyh2FDpURKCoqijFjxnDvvfeyfft2tm/fzr333sv48eOVPyLUPb+4NPtESUkJX375Jffcc0+94x49epQXX3yRnTt3kpWVxQ8//MAtt9xCbGwsV1xxRYtsVdPzlXQsnXQ6HceOHWP27NlA3TPDFStWXPZxO5JG5kJqpI7L1emTTz5R7rXPPfdchwuYoJEvmXPsNz8/X9xxxx3C1dVVuLq6ijvuuEMUFhYatQHE0qVLjba9//77wtHRURQVFdU75okTJ8TVV18tvLy8hJ2dnejRo4d49NFHRX5+fovt3L59e4v37Ux0VJ02bNigPOsZO3bsZR2ro2rUmkiN1HE5Og0ZMkTx6d9++60VrbIstPAls82ehbqu86effmoqaNfbNnPmTGbOnNlg++DgYLZs2dIq9kkkACNHjiQvLw9vb29+/PFHdDodBQUFeHp6am2aRNIs8vPzjR6fST9ufWTuWeqm/ktM05F16tKlC3q9nkGDBgF1P/i++eabZh+nI2vUWkiN1NFcnb766islYF599dUIITp8wNTCl2TQBEpLS7U2oV3Q0XXS6XRs3bpVWcc2ceJEBg4c2OBoSGN0dI1aA6mROtTqJIQgNjaWW265BYAvv/yy04zGaeFLMmiC6mQLnZ3OotOdd96pLJbfsWMHVlZWyuJuU3QWjS4HqZE61Oi0f/9+rKyslGQVeXl53HzzzWa2zHLQwpdk0JRIGsDHxwchBHfeeSdQl9Hmvvvu09gqieRv7rrrLmJiYoC6AhZCCLp06aKxVR0fnWjO2FMHRQgh82GqoLPqtGvXLqOkGUePHq1XQMBAZ9WoOUiN1NGYThevvQTYs2cPffr0aUvTLAYtfEn2NEEZ2pA0TWfVKTY2Fr1ez5AhQ4C6nJp33HFHg886O6tGzUFqpI5LdRJCMHnyZCVgjhw5Er1e32kDJmjjSzJoAlVVVVqb0C7ozDrpdDo2b96sJBn/7LPPsLKyUt4b6MwaqUVqpI6Ldfrzzz+xsrJSikSnpaWxYcOGTt9j18KXZNAEPDw8tDahXSB1qqtEotfrmTRpElBX7q5bt25UVFQAUiM1SI3U4eHhQXl5OQEBAVx55ZVA3SQ1vV5PbGysxtZZBlr4kgya1JWPkZhG6lSHTqdj1apVSnmnkydP4ujoyIsvvig1UoHUSB3Lli3D2dlZmSF68uRJli9f3ul7lxejhS/JoAlKzUJJ00idjOnWrRtCCN5//30AXnjhBVxcXDrNGrmWIv2oaTZt2oROp+O1114D6oKnEEL+2GgALXxJBk2J5DKZOXMmNTU1DB8+HIChQ4ei0+mUosQSiRqysrLQ6XSMGDECgMGDB1NbW8vUqVM1tkxyMXLJCXU1Pn18fLQ2w+KROplm//79yto5qKstu3v3btzc3DS0yrKQfmRMUVERffr04dSpU0Dd8H9OTg46nU7qZAItfEn2NEGZxCFpGqmTadzc3BBCkJycDNT1Htzd3Rk8eDAXLlzQ2DrLQPpRHeXl5QwcOBBPT08lYKalpaHX6/H19ZU6qUALjWTQBM6cOaO1Ce0CqZNpDBolJiYihFBqxW7btg0nJyeGDRvW6W+Gnd2PLly4wNVXX42zs7OyZGnt2rVKDlkDnV0nNWihkQyaEokZueGGGxBCsGzZMgA2b96Mo6MjSUlJlJSUaGucpE0pLi6mf//+ODk58fvvvwPw6aefIoTg2muv1dg6iVrkM02gpqYGGxuzlhbtEEidTGNKo48//php06Yp7319fdm5cyfBwcFtYJ1l0Nn8KDMzk9jYWIqLi5Vty5cvV/IaN0Zn06klaKGR7GlSN3lDYhqpk2lMaTR16lSEEEqtznPnztGtWzd0Oh2//vprG1ioPZ3Fj3766Sd0Oh3du3dXAub3339vVAigKTqLTpeDFhrJoImcmKAWqZNp1Gp0/fXXI4Rg586dyrbhw4ej0+mYPXs2tbW15jJRczqyH9XU1PD444+j0+kYM2aMsj09PR0hBOPHj1d9rI6sU2shJwJphFwOoA6pk2maq1F8fDxCCHJzc0lKSgLgjTfewMbGBh8fnw7Z2+iIfpSeno6Xlxe2tra88847QF2KxYKCAoQQ9OvXr9nH7Ig6tTZaaCSDJnVr6SSmkTqZpqUaeXt7s2PHDvR6PfPnzwfqCgrHxMSg0+mYOXMm5eXlrWipdnQUPyorK+Puu+9Gp9MRGxtLYWEhAP/617/Q6/Vs27YNT0/PFh+/o+hkTrTQSAZN6urRSUwjdTLN5Wqk0+l46qmnEEKQkZFBr169APjwww9xdnZGp9Px9ttvo9frW8NcTWjPflRbW8sbb7yBTqfDxcVFmRUdGRnJ0aNHEULwj3/8o1Xyw7ZnndoKLTSSQVMisVB69epFRkYGer2ejz/+WNn+xBNPYG1tjU6n4z//+U+Hfv5pCdTW1vL222+j0+mwsbFh9uzZymefffYZQggOHjzYaGFyScdCBk0gJCREaxPaBVIn05hDI51Ox1133YUQgqqqKl544QXls0cffRQbGxt0Oh2zZs0yWtZgqbQHPyouLuaxxx5TAuUTTzyhfPbSSy9RXV2NEILbbrvNbDa0B520RguNZNAE+UtdJVIn05hbI1tbW+bOnYsQgoqKCl588UXlswULFuDh4YFOp6NPnz78/PPPWOIybEv0IyEE69atIzo6Gp1Oh4eHB++++67y+csvv0xVVRVCCJ599tk2WRtoiTpZGlpoJIMmKHkfJU0jdTJNW2pkb2/Pc889hxACvV7P559/rhTl3bdvH6NHj8bKygqdTseoUaPYsmWLRQRRS/AjIQS//vorw4YNQ6fTYWVlxfjx4zlw4ABQNzHr888/R6/XI4TgmWeewdbWtk1ttASdLB0tNDJr0HzllVcYPHgwTk5OqitsCyGYO3cugYGBODo6MnTo0HrT7isrK3nkkUfw9vbG2dmZ6667TjqYpFOj0+mYPHkyhYWFCCE4ffo09957r/L5hg0bGDp0qBJEQ0JCeOutt5QZnx2d/Px8/vWvfxEaGqoEyeHDh7N582alzQMPPMCZM2eUJUCTJ0+WBZ8l9RFm5PnnnxdvvfWWeOKJJ4S7u7uqfV577TXh6uoqVq9eLfbu3SsmT54sAgICRElJidLm/vvvF127dhUbNmwQaWlpYtiwYaJfv36ipqamRXZWVla2aL/OhtTJNJaq0aFDh8SMGTME0OgrKChIzJ49W6Snpwu9Xm82W8ypkV6vFzt37hSzZ88WXbt2bfJ6Z8yYIY4cOWI2Wy4XS/UlS0ILjcwaNA0sXbpUVdDU6/XC399fvPbaa8q2iooK4e7uLt577z0hhBBFRUXC1tZWfP7550qb06dPCysrK7F+/foW2bd3794W7dfZkDqZpr1oVFpaKt5//30RFxfXZGABhK2trRg/frz497//LZKTk0VVVdVlnftyNaqsrBTJycnijTfeEGPHjhV2dnYmryEhIUEsXrxYlJWVXda525L24ktaooVGFpUNODMzk5ycHEaNGqVss7e3Z8iQIWzdupX77ruP1NRUqqurjdoEBgYSExPD1q1bGT16dLPPW1ZW1ir2d3SkTqZpLxo5Ozszc+ZMZs6cqWyrrq5mw4YNfP7553zzzTecP39e2b527VrWrl3b5DH9/f0JCQkhJCSEwMBAfH198fHxwc3NDRcXF5ydnbGxseHgwYOUlJRQWVlJZWUl58+fp7CwkMLCQrKzszl9+jSnT5/myJEj5ObmNvu6Jk2axC233MKIESOws7NrvjgWQnvxJS3RQiOLCpo5OTkA+Pn5GW338/Pj+PHjShs7O7t6mTb8/PyU/S/F8OW8GHt7e+zt7QFwcXFpFfs7OlIn07RnjWxtbRk3bhzjxo2r99nJkyf57bff+OOPP/jjjz/Yt29fvTY5OTnk5OQoNSLNRf/+/RkwYABXX301Q4cOJTAw0Kzn04r27EtthRYaNTtozp07l3nz5jXZJiUlhYSEhBYbdenDdyGEyQfyTbWZP39+PZtnzZrF5MmTAYiJiWHPnj1cuHABV1dXwsLClEwTISEh6PV6Tp48CdR9YY8cOUJpaSnOzs6Eh4eza9cuAIKCgrC2tlYCfN++fcnKyqKkpAQHBweio6NJTU0F6nrHDg4OHDt2TLHh1KlTFBUVYWdnR//+/UlOTgbqfsG7uLhw5MgRAKKiojh79iwFBQXY2NgQHx9PcnIyQgh8fHzw9PQkIyMDgIiICAoKCsjNzcXKyorExER27txJbW0tXbp0wdfXl4MHDwJ1i+lLSko4e/YsAAMGDCAtLY3q6mo8PT0JCAhQbog9evSgvLyc7OxsABISEti3bx8VFRW4u7vTrVs39u7dC9SluqqpqVEma/3/9u43pon7jwP4u0KhdMAxqPTKhlKBwTKRAA6KmcOMyXTOMB/MbRrSJYvZnywLi4shWzLdgzkxmz5xziwxusQlWzJwyeI0NrHgEjuHWuYfBIxUazaR/38sYCd+fg/8cVl/dNyVH72D8nklfcDxvfZ773zSz12vvSssLERraytGRkYQHx+PzMxM/PHHHwCARYsWAQC8Xi8AID8/H9evX8fdu3dhNBqRm5uLCxcuSHlHR0fjxo0bAIC8vDx4vV4MDg7CYDBg6dKl0gXRLRYLjEYjrl+/DgB46qmn8Ndff6G/vx96vR6FhYXStpnNZiQmJuLatWtS3l1dXejt7UVUVBSWL1+OpqYmPHjwAAsXLkRycjLa2toAAFarFR0dHeju7oZOp0NxcTHOnz+P+/fvIzk5GWazWco7KysLd+/elXb2iouL0dzcDL/fj6SkJDz++ONSc1qyZAnGxsakm+4WFRXhypUrGBsbQ2JiIjIyMgJqdnx8XMq7oKAA7e3t8Pl8iI+PR1ZWFpqbmwEA6enpWLBgQUDNejweDA8PIy4uDk8++aSUd1lZGVavXg2PxyPlfevWLQwMDCA2NhbLli2Dy+XCnTt3QETw+Xy4evWq9Lrd3d3w+XwgIoiiiL6+Puj1epjNZoiiiJGREaSkpMBmsyEqKgpDQ0NSzU7kbTKZYDKZ0NraCgAwGAzweDzo6uqaVLPJyckQRVH6RmxmZiZ8Pp+U99NPP42LFy/i3r17SEpKQnp6ulSzVqsVfr8ff/75p1SzV69eVfU9IjU1Fd3d3XPqPSItLU364qYa7xHj4+MYGxv7v98jSkpKoFTI99Ps6elBT0/PlGMyMjJgMBikvw8fPozq6moMDAxMuV5HRwcyMzNx4cKFgDuYV1ZWIikpCd9++y1OnTqF8vJy9PX1BRxt5ufn4+WXXw7a0OWONM+ePRtSaPMV5ySPM5LHGSnDOcnTIqOQjzQn9vTCwWq1QhRFOBwOqWn6/X40NjaitrYWwMM9bL1eD4fDgY0bNwIAbt++jcuXL2P37t1Bn/efDZIxxhibrrCe0/R6vejr65MOoyc+EsrKypI+i87NzcXnn3+ODRs2QKfTobq6Gjt37kR2djays7Oxc+dOGI1GbNq0CQAgCALefPNNbN26FSkpKUhOTsaHH36IvLw8PP/889OaZ3p6+oxsb6TjnORxRvI4I2U4J3laZBTWpvnJJ58EXGh64ujR6XRi1apVAIC2traA62Vu27YNo6OjePfdd9Hf34+SkhKcPHkSCQkJ0pi9e/ciOjoaGzduxOjoKMrLy3H48GFERUVNa54LFvCFkZTgnORxRvI4I2U4J3laZBTyOc1IxOcOlOGc5HFG8jgjZTgneVpkxLsyjDHGmEJ8pAlgdHQUcXFxWk9j1uOc5HFG8jgjZTgneVpkxEeagPS7MzY1zkkeZySPM1KGc5KnRUbcNAHpcmFsapyTPM5IHmekDOckT4uMuGkC/BGIQpyTPM5IHmekDOckT4uM+JwmHl6QWu0bzM5FnJM8zkgeZ6QM5yRPi4z4SBOQrlPIpsY5yeOM5HFGynBO8rTIiJsmY4wxptC8b5r37t3D8ePHJ13QnQXinORxRvI4I2U4J3laZTTvz2kODQ1BEAQMDg4iMTFR6+nMWpyTPM5IHmekDOckT6uM5v2RJmOMMaYUN03GGGNMIW6ajDHGmELzvmnGxsZi+/btfJNqGZyTPM5IHmekDOckT6uM5v0XgRhjjDGl5v2RJmOMMaYUN03GGGNMIW6ajDHGmELcNBljjDGF5mXT/Oyzz7BixQoYjUYkJSUpWueNN96ATqcLeNhstvBOVEPTyYiIsGPHDqSlpSEuLg6rVq3ClStXwjtRjfX396OqqgqCIEAQBFRVVWFgYGDKdSK9lvbv3w+r1QqDwYCioiL8+uuvU45vbGxEUVERDAYDlixZggMHDqg0U22FklNDQ8OkmtHpdGhtbVVxxuo6ffo01q9fj7S0NOh0Ovz000+y66hRS/Oyafr9frzyyit45513QlpvzZo1uH37tvT45ZdfwjRD7U0no927d2PPnj3Yt28fmpqaIIoiVq9eHdE30920aROam5tx4sQJnDhxAs3NzaiqqpJdL1Jr6YcffkB1dTU+/vhjuN1urFy5EmvXroXX6w063uPx4MUXX8TKlSvhdrvx0Ucf4f3330ddXZ3KM1dXqDlNaGtrC6ib7OxslWasPp/Ph/z8fOzbt0/ReNVqieaxQ4cOkSAIisba7XaqrKwM63xmI6UZPXjwgERRpF27dknLxsbGSBAEOnDgQBhnqJ2WlhYCQL/99pu0zOVyEQBqbW391/UiuZaKi4vp7bffDliWm5tLNTU1Qcdv27aNcnNzA5a99dZbZLPZwjbH2SDUnJxOJwGg/v5+FWY3+wCgo0ePTjlGrVqal0ea09XQ0IDU1FQ88cQT2LJlC7q6urSe0qzh8XjQ2dmJiooKaVlsbCzKyspw5swZDWcWPi6XC4IgoKSkRFpms9kgCILsNkdiLfn9fpw/fz6gBgCgoqLiX/NwuVyTxr/wwgs4d+4c/v7777DNVUvTyWlCQUEBLBYLysvL4XQ6wznNOUetWuKmqdDatWvx3Xff4dSpU/jyyy/R1NSE5557jm/d81+dnZ0AALPZHLDcbDZL/4s0nZ2dSE1NnbQ8NTV1ym2O1Frq6enB+Ph4SDXQ2dkZdPz9+/fR09MTtrlqaTo5WSwWfPPNN6irq0N9fT1ycnJQXl6O06dPqzHlOUGtWoqYprljx46gJ8r/+Th37ty0n//VV1/FunXrsHTpUqxfvx7Hjx9He3s7jh07NoNbEV7hzggAdDpdwN9ENGnZbBdKTsG2TW6bI6GWphJqDQQbH2x5pAklp5ycHGzZsgWFhYUoLS3F/v37sW7dOnzxxRdqTHXOUKOWomfsmTT23nvv4bXXXptyTEZGxoy9nsViweLFi3Ht2rUZe85wC2dGoigCeLi3Z7FYpOVdXV2T9v5mO6U5Xbx4EXfu3Jn0v+7u7pC2eS7WUjAmkwlRUVGTjpamqgFRFIOOj46ORkpKStjmqqXp5BSMzWbDkSNHZnp6c5ZatRQxTdNkMsFkMqn2er29vbh161ZAg5jtwpmR1WqFKIpwOBwoKCgA8PDcTWNjI2pra8PymuGiNKfS0lIMDg7i999/R3FxMQDg7NmzGBwcxIoVKxS/3lyspWBiYmJQVFQEh8OBDRs2SMsdDgcqKyuDrlNaWoqff/45YNnJkyexfPly6PX6sM5XK9PJKRi32z3na2YmqVZLM/q1ojni5s2b5Ha76dNPP6X4+Hhyu93kdrtpeHhYGpOTk0P19fVERDQ8PExbt26lM2fOkMfjIafTSaWlpfTYY4/R0NCQVpsRVqFmRES0a9cuEgSB6uvr6dKlS/T666+TxWKJ2IyIiNasWUPLli0jl8tFLpeL8vLy6KWXXgoYM59q6fvvvye9Xk8HDx6klpYWqq6upkceeYRu3LhBREQ1NTVUVVUlje/o6CCj0UgffPABtbS00MGDB0mv19OPP/6o1SaoItSc9u7dS0ePHqX29na6fPky1dTUEACqq6vTahPCbnh4WHrfAUB79uwht9tNN2/eJCLtamleNk273U4AJj2cTqc0BgAdOnSIiIhGRkaooqKCFi5cSHq9nhYtWkR2u528Xq82G6CCUDMievizk+3bt5MoihQbG0vPPvssXbp0Sf3Jq6i3t5c2b95MCQkJlJCQQJs3b570s4D5VktfffUVLV68mGJiYqiwsJAaGxul/9ntdiorKwsY39DQQAUFBRQTE0MZGRn09ddfqzxjbYSSU21tLWVmZpLBYKBHH32UnnnmGTp27JgGs1bPxM9s/vdht9uJSLta4luDMcYYYwpFzLdnGWOMsXDjpskYY4wpxE2TMcYYU4ibJmOMMaYQN03GGGNMIW6ajDHGmELcNBljjDGFuGkyxhhjCnHTZIwxxhTipskYY4wpxE2TMcYYU4ibJmOMMabQfwBHNiYWX9aJpAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "