-
Notifications
You must be signed in to change notification settings - Fork 0
/
shapiro_wilk.html
166 lines (152 loc) · 7.56 KB
/
shapiro_wilk.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
<!DOCTYPE html>
<html>
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-131282143-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-131282143-1');
</script>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>EZ Statistics: Shapiro-Wilk</title>
<meta name="description" content="EZ Statistics shapiro-wilk">
<link rel="stylesheet" href="style/stats.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-csv/0.71/jquery.csv-0.71.min.js"></script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script src="jstat.js"></script>
<script src="ezstatistics-0.30.js"></script>
</head>
<body>
<center><img class="round" src="style/logo.png" height="105"/></center>
<div style="text-align: right"><a href="index.html">Back to main page</a></div>
<h3 class="f18b">Shapiro-Wilk Expanded test for normally distributed sample</h3>
The test is accurate for sample sizes between 12 and 5000, although sample sizes of at least 20 are recommended. You can run the test for 10 or more samples.
You can read more about the test at <a href="http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-wilk-expanded-test/" target="_blank">Real Statistics</a>.
You can also read about skewness and kurtosis at <a href="http://www.real-statistics.com/descriptive-statistics/symmetry-skewness-kurtosis/" target="_blank">Real Statistics</a>.
<br> <br>
Tests the hypotheses:
<table>
<tr>
<th class="dark" width="30">H<sub>0</sub></th>
<td class="border">The sample is normally distributed </td>
</tr>
<tr>
<th class="dark">H<sub>1</sub></th>
<td class="border">The sample is not normally distributed </td>
</tr>
</table>
<div class="smalltext">
<div class="label16">
<h3 class="f16"> Data Entry</h3>
</div>
<br/>
<table>
<tr>
<td>Sample A:</td>
<td><input class="sample" name="sampA" id="samp1" value="65, 61, 63, 86, 70, 55, 74, 35, 72, 68, 45, 58"></td>
<tr/>
<tr>
<td>Significance level α: </td>
<td><input class="value" name="alpha" id="alpha" value="0.05"></td>
</tr>
<tr>
<td>Upload CSV file:</td>
<td>
<input type="file" name="File Upload" id="txtFileUpload" accept=".csv" />
</td>
</tr>
</table>
<br>
<button class="test" onclick="javascript:run_shapirowilk()">Run Test</button>
<button class="clear" onclick="javascript:clear_fields(1)">Clear</button>
<div id="error">
</div>
<div id="test_results" style="display: none;">
<div class="label16">
<h3 class="f16"> Test Result <button class="help" onclick="javascript:toggle('help')";>?</button></h3>
</div>
<div id="help" style="display: none;">
<br>
Skewness is a measure of symmetry. A skewness close to 0 means that the distribution is symmetric. A
negative skewness means the distribution is skewed to the left (the bulk of the histogram is to the right), a positive that is is skewed to the
right (the bulk of the histogram is to the left).
Since the normal distribution is symmetric, a normally distributed sample should have a skewness close to 0.
<p class="tab">Kurtosis is a measurement about the extremities (tails) of the distribution. The normal distribution
has a kurtosis of 0, so a normally distributed sample should also have a kurtosis close to 0.</p>
</div>
<br/>
<table class="border">
<thead>
<tr>
<th colspan=4 class="dark">Data Summary</th>
</tr>
<tr>
<th class="dark" width="70">Sample</th>
<th class="dark" width="40">N</th>
<th class="dark" width="100">Mean</th>
<th class="dark" width="100">Stdev</th>
</tr>
</thead>
<tbody>
<tr>
<th class="dark">A</th>
<td class="border" id="n1"> </td>
<td class="border" id="mean1"> </td>
<td class="border" id="stdev1"> </td>
</tr>
</tbody>
</table>
<br/>
<table class="border">
<thead>
<tr>
<th class="dark" width="550" colspan="2">Result</th>
</tr>
</thead>
<tbody>
<tr>
<td class="dark" width="130"><b>Significance level α:</b></td>
<td class="border" width="420" id="sign_level"> </td>
</tr>
<tr>
<td class="dark"><b>P-value:</b></td>
<td class="border" id="p"> </td>
</tr>
<tr>
<td class="dark"><b>Z-score:</b></td>
<td class="border" id="z"> </td>
</tr>
<tr>
<td class="dark"><b>W-statistic:</b></td>
<td class="border" id="w"> </td>
</tr>
<tr>
<td class="dark"><b>Skew:</b></td>
<td class="border" id="skew"> </td>
</tr>
<tr>
<td class="dark"><b>Kurtosis:</b></td>
<td class="border" id="kurtosis"> </td>
</tr>
<tr>
<td class="dark"><b>Result:</b></td>
<td class="border" id="res"> </td>
</tr>
</tbody>
</table>
<div id="viz">
<div class="label16">
<h3 class="f16"> Data Visualization</h3>
</div>
<div id="chart"></div>
<br>
<div id="hist"></div>
</div>
</div>
</div>
</body>
</html>