Skip to content

EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene

License

Notifications You must be signed in to change notification settings

jiangxb98/EGSRAL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

EGS-RAL:An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene

This repository contains the official implementation associated with the paper "EGSRAL:An Enhanced 3D Gaussian Splatting Based Renderer with Automated Labeling for Large-Scale Driving Scene".

Arxiv

Yixiong Huo*, Guangfeng Jiang*, Hongyang Wei, Ji Liu†, Song Zhang, Han Liu, Xingliang Huang, Mingjie Lu, Jinzhang Peng, Dong Li, Lu Tian, Emad Barsoum
AAAI 2025

framework

ToDo

  • The code is being approved internally.

Dataset

In our paper, we use:

  • KITTI City used in READ paper.
  • NuScenes-S [164, 209, 359,916] used in S-NeRF paper.
  • NuScenes-D [103 168 212 220 228 687] used in DrivingGaussian paper.

These datasets generated by the huo, yixiong.

  • KITTI dataset/KITTI
  • NuScenes-S dataset/datasets_s
  • NuScenes-D dataset/datasets_d

Note: If use the NuScenes-D please use the python script 3dgs-utils/sort_rename_dgs.py to generate the id map pkl file·

Run

Environment

Baed on the Deformable 3DGS.

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
python -m pip install setuptools==69.5.1
pip install plyfile tqdm opencv-python 
cd submodules
pip install -e depth-diff-gaussian-rasterization
pip install -e simple-knn

Train

KITTI-City

# train 3dgs
CUDA_VISIBLE_DEVICES=0 python train_kitti_3dgs.py -s dataset/KITTI -m logs/kitti_3dgs --data_device cuda --eval --port 6040
# render
CUDA_VISIBLE_DEVICES=0 python render_3dgs.py -m logs/kitti_3dgs --skip_train --data_device cuda --mode render --iteration 9999999 --scene_name kitti18
# metric
CUDA_VISIBLE_DEVICES=0 python metrics_alex.py -m logs/kitti_3dgs

# train deformable 3dgs
CUDA_VISIBLE_DEVICES=0 python train_kitti_d3dgs.py -s dataset/KITTI -m logs/kitti_d3dgs --data_device cuda --eval --port 6040
CUDA_VISIBLE_DEVICES=0 python render_d3dgs.py -m logs/kitti_d3dgs --skip_train --data_device cuda --mode render --iteration 9999999 --scene_name kitti18
CUDA_VISIBLE_DEVICES=0 python metrics_alex.py -m logs/kitti_d3dgs

# train EGSRAL without group
CUDA_VISIBLE_DEVICES=0 python train_kitti_egsral.py -s dataset/KITTI -m logs/kitti_egsral --data_device cuda --eval --port 6047
CUDA_VISIBLE_DEVICES=0 python render_egsral.py -m logs/kitti_egsral --skip_train --data_device cuda --mode render --iteration 9999999 --scene_name kitti18
CUDA_VISIBLE_DEVICES=0 python metrics_alex.py -m logs/kitti_egsral

# train EGSRAL with group
CUDA_VISIBLE_DEVICES=4,5,6,7 python train_kitti_egsral_group.py -s dataset/KITTI -m logs/kitti_egsral_group --data_device cuda --eval --port 6047
CUDA_VISIBLE_DEVICES=0 python render_egsral_group.py -m logs/kitti_egsral_group --skip_train --data_device cuda --mode render --iteration 9999999 --scene_name kitti18
CUDA_VISIBLE_DEVICES=0 python metrics_alex.py -m logs/kitti_egsral_group

Experiment Results

KITTI-City

NuScenes-D

NuScenes-S

Visualization

framework

Qualitative comparison of novel view synthesis on the KITTI City dataset.

framework

Visualizing 3D auto labeling on nuScenes.

Acknowledgments

We sincerely thank the authors of 3DGS and Deformable 3DGS, whose codes were used in our work.

About

EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published