-
Notifications
You must be signed in to change notification settings - Fork 41
/
main_test_fbcnn_gray.py
122 lines (101 loc) · 5.11 KB
/
main_test_fbcnn_gray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os.path
import logging
import numpy as np
from datetime import datetime
from collections import OrderedDict
import torch
import cv2
from utils import utils_logger
from utils import utils_image as util
import requests
def main():
quality_factor_list = [10, 20, 30, 40, 50, 60, 70, 80, 90]
testset_name = 'Classic5' # 'LIVE1_gray' 'Classic5' 'BSDS500_gray'
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
nc = [64,128,256,512]
nb = 4
show_img = False # default: False
testsets = 'testsets'
results = 'test_results'
for quality_factor in quality_factor_list:
result_name = testset_name + '_' + model_name[:-4]
H_path = os.path.join(testsets, testset_name)
E_path = os.path.join(results, result_name, str(quality_factor)) # E_path, for Estimated images
util.mkdir(E_path)
model_pool = 'model_zoo' # fixed
model_path = os.path.join(model_pool, model_name)
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
print(f'downloading model {model_path}')
open(model_path, 'wb').write(r.content)
logger_name = result_name + '_qf_' + str(quality_factor)
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
logger.info('--------------- quality factor: {:d} ---------------'.format(quality_factor))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
border = 0
# ----------------------------------------
# load model
# ----------------------------------------
from models.network_fbcnn import FBCNN as net
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
H_paths = util.get_image_paths(H_path)
for idx, img in enumerate(H_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = util.imread_uint(img, n_channels=n_channels)
if n_channels == 3:
img_L = cv2.cvtColor(img_L, cv2.COLOR_RGB2BGR)
_, encimg = cv2.imencode('.jpg', img_L, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img_L = cv2.imdecode(encimg, 0) if n_channels == 1 else cv2.imdecode(encimg, 3)
if n_channels == 3:
img_L = cv2.cvtColor(img_L, cv2.COLOR_BGR2RGB)
img_L = util.uint2tensor4(img_L)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
# img_E,QF = model(img_L, torch.tensor([[0.6]]))
img_E,QF = model(img_L)
QF = 1 - QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels).squeeze()
# --------------------------------
# PSNR and SSIM, PSNRB
# --------------------------------
psnr = util.calculate_psnr(img_E, img_H, border=border)
ssim = util.calculate_ssim(img_E, img_H, border=border)
psnrb = util.calculate_psnrb(img_H, img_E, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
test_results['psnrb'].append(psnrb)
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.3f}; PSNRB: {:.2f} dB.'.format(img_name+ext, psnr, ssim, psnrb))
logger.info('predicted quality factor: {:d}'.format(round(float(QF*100))))
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None
util.imsave(img_E, os.path.join(E_path, img_name+'.png'))
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
logger.info(
'Average PSNR/SSIM/PSNRB - {} -: {:.2f}$\\vert${:.4f}$\\vert${:.2f}.'.format(result_name+'_'+str(quality_factor), ave_psnr, ave_ssim, ave_psnrb))
if __name__ == '__main__':
main()