forked from zhangming8/yolox-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.sh
16 lines (12 loc) · 1.21 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env bash
# train from scratch
# yolox-s
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=False val_intervals=1 data_num_workers=8
# yolox-tiny
#python train.py gpus='0' backbone="CSPDarknet-tiny" num_epochs=300 exp_id="coco_CSPDarknet-tiny_416x416" use_amp=False val_intervals=2 data_num_workers=8 metric="ap" random_size=None batch_size=128 input_size="(416,416)"
# load pre-train weight
#python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=False val_intervals=1 data_num_workers=8 load_model="../weights/yolox-s.pth" resume=False
# resume 'model_best.pth / model_num.pth', includes weight and epoch
#python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=False val_intervals=1 data_num_workers=8 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" resume=True
# resume 'model_last.pth', includes weight, optimizer, scaler and epoch
#python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=False val_intervals=1 data_num_workers=8 load_model="exp/coco_CSPDarknet-s_640x640/model_last.pth" resume=True