-
Notifications
You must be signed in to change notification settings - Fork 15
/
seascape.sksl
209 lines (184 loc) · 5.23 KB
/
seascape.sksl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
uniform float iTime;
uniform float2 iResolution;
uniform float4 iMouse;
/*
* "Seascape" by Alexander Alekseev aka TDM - 2014
* License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
* Contact: [email protected]
* https://www.shadertoy.com/view/Ms2SD1
*/
const int NUM_STEPS = 8;
const float PI = 3.141592;
const float EPSILON = 1e-3;
float EPSILON_NRM() {
return 0.1 / iResolution.x;
}
// sea
const int ITER_GEOMETRY = 3;
const int ITER_FRAGMENT = 5;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 4.0;
const float SEA_SPEED = 0.8;
const float SEA_FREQ = 0.16;
const vec3 SEA_BASE = vec3(0.0, 0.09, 0.18);
const vec3 SEA_WATER_COLOR = vec3(0.8, 0.9, 0.6) * 0.6;
const mat2 octave_m = mat2(1.6, 1.2, -1.2, 1.6);
float SEA_TIME() {
return (1.0 + iTime * SEA_SPEED);
}
// math
mat3 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x), cos(ang.x));
vec2 a2 = vec2(sin(ang.y), cos(ang.y));
vec2 a3 = vec2(sin(ang.z), cos(ang.z));
mat3 m;
m[0] = vec3(a1.y * a3.y + a1.x * a2.x * a3.x, a1.y * a2.x * a3.x + a3.y * a1.x, -a2.y * a3.x);
m[1] = vec3(-a2.y * a1.x, a1.y * a2.y, a2.x);
m[2] = vec3(a3.y * a1.x * a2.x + a1.y * a3.x, a1.x * a3.x - a1.y * a3.y * a2.x, a2.y * a3.y);
return m;
}
float hash(vec2 p) {
float h = dot(p, vec2(127.1, 311.7));
return fract(sin(h) * 43758.5453123);
}
float noise( in vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p);
vec2 u = f * f * (3.0 - 2.0 * f);
return -1.0 + 2.0 * mix(mix(hash(i + vec2(0.0, 0.0)),
hash(i + vec2(1.0, 0.0)), u.x),
mix(hash(i + vec2(0.0, 1.0)),
hash(i + vec2(1.0, 1.0)), u.x), u.y);
}
// lighting
float diffuse(vec3 n, vec3 l, float p) {
return pow(dot(n, l) * 0.4 + 0.6, p);
}
float specular(vec3 n, vec3 l, vec3 e, float s) {
float nrm = (s + 8.0) / (PI * 8.0);
return pow(max(dot(reflect(e, n), l), 0.0), s) * nrm;
}
// sky
vec3 getSkyColor(vec3 e) {
e.y = (max(e.y, 0.0) * 0.8 + 0.2) * 0.8;
return vec3(pow(1.0 - e.y, 2.0), 1.0 - e.y, 0.6 + (1.0 - e.y) * 0.4) * 1.1;
}
// sea
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0 - abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv, swv, wv);
return pow(1.0 - pow(wv.x * wv.y, 0.65), choppy);
}
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz;
uv.x *= 0.75;
float d, h = 0.0;
for (int i = 0; i < ITER_GEOMETRY; i++) {
d = sea_octave((uv + SEA_TIME()) * freq, choppy);
d += sea_octave((uv - SEA_TIME()) * freq, choppy);
h += d * amp;
uv *= octave_m;
freq *= 1.9;
amp *= 0.22;
choppy = mix(choppy, 1.0, 0.2);
}
return p.y - h;
}
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz;
uv.x *= 0.75;
float d, h = 0.0;
for (int i = 0; i < ITER_FRAGMENT; i++) {
d = sea_octave((uv + SEA_TIME()) * freq, choppy);
d += sea_octave((uv - SEA_TIME()) * freq, choppy);
h += d * amp;
uv *= octave_m;
freq *= 1.9;
amp *= 0.22;
choppy = mix(choppy, 1.0, 0.2);
}
return p.y - h;
}
vec3 getSeaColor(vec3 p, vec3 n, vec3 l, vec3 eye, vec3 dist) {
float fresnel = clamp(1.0 - dot(n, -eye), 0.0, 1.0);
fresnel = pow(fresnel, 3.0) * 0.5;
vec3 reflected = getSkyColor(reflect(eye, n));
vec3 refracted = SEA_BASE + diffuse(n, l, 80.0) * SEA_WATER_COLOR * 0.12;
vec3 color = mix(refracted, reflected, fresnel);
float atten = max(1.0 - dot(dist, dist) * 0.001, 0.0);
color += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
color += vec3(specular(n, l, eye, 60.0));
return color;
}
// tracing
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x + eps, p.y, p.z)) - n.y;
n.z = map_detailed(vec3(p.x, p.y, p.z + eps)) - n.y;
n.y = eps;
return normalize(n);
}
float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if (hx > 0.0) {
p = ori + dir * tx;
return tx;
}
float hm = map(ori + dir * tm);
float tmid = 0.0;
for (int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm, tx, hm / (hm - hx));
p = ori + dir * tmid;
float hmid = map(p);
if (hmid < 0.0) {
tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
vec3 getPixel( in vec2 coord, float time) {
vec2 uv = coord / iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x / iResolution.y;
// ray
vec3 ang = vec3(sin(time * 3.0) * 0.1, sin(time) * 0.2 + 0.3, time);
vec3 ori = vec3(0.0, 3.5, time * 5.0);
vec3 dir = normalize(vec3(uv.xy, -2.0));
dir.z += length(uv) * 0.14;
dir = normalize(dir) * fromEuler(ang);
// tracing
vec3 p;
heightMapTracing(ori, dir, p);
vec3 dist = p - ori;
vec3 n = getNormal(p, dot(dist, dist) * EPSILON_NRM());
vec3 light = normalize(vec3(0.0, 1.0, 0.8));
// color
return mix(
getSkyColor(dir),
getSeaColor(p, n, light, dir, dist),
pow(smoothstep(0.0, -0.02, dir.y), 0.2));
}
// main
vec4 main(vec2 fragCoord) {
fragCoord.y = iResolution.y - fragCoord.y;
fragCoord.x = iResolution.x - fragCoord.x;
float time = iTime * 0.3 + iMouse.x * 0.01;
vec3 color = getPixel(fragCoord, time);
// post
return (vec4(pow(color, vec3(0.65)), 1.0));
}