Skip to content

Latest commit

 

History

History
53 lines (41 loc) · 1.61 KB

notes.md

File metadata and controls

53 lines (41 loc) · 1.61 KB

batch 0 class prob at 7680 out of 12276

kde je v y_true class == 1

idxs = tf.where(y_true[0][...,4] == 1)

for idx in idxs: print(y_true[0][int(idx)])

box 1 x1 = 219.854336 x2 = 245.53984 y1 = 228.844288 y2 = 252.817408

box 2 x1 = 186.034688 x2 = 213.860864 y1 = 231.412736 y2 = 255.385856

'positive_mask' ... zda maximální IOU přes libovolný box je větší než 0.5 - i.e. if any gt box hits anchor at respective index

'matched_gt_idx' ... selects from box that hits, you also need to look at positive, negative and ignore masks to get a grasp of the meaning of particular 'anchor box'

'label' from _encode_sample means [box_target, class_target], which is ['transform of anchor to match gt box', 'index of class (0..num_classes-1) or -1 if not positive box hit, or -2 if ignore mask at that anchor]

'So that what the net trains is anchor box offset + scale of each anchor to match the ground truth box.', which is the regression task.


pos = tf.where(label[...,-1] >= 0) <tf.Tensor: shape=(8, 1), dtype=int64, numpy= array([[8607], [8616], [8859], [8862], [8868], [8871], [8895], [8904]])>

anchor_boxes[8607] <tf.Tensor: shape=(4,), dtype=float32, numpy=array([228., 236., 32., 32.], dtype=float32)> classes <tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 1.], dtype=float32)> gt_boxes array([[232.69708 , 240.83084 , 25.685505, 23.97312 ], [199.94777 , 243.39929 , 27.826176, 23.97312 ]], dtype=float32) label[8607] <tf.Tensor: shape=(5,), dtype=float32, numpy= array([ 1.4678383, 1.5096378, -1.0990453, -1.4440136, 0. ], dtype=float32)>