forked from tau-adl/Detection_Tracking_JetsonTX2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DetectAndTrack.py
454 lines (415 loc) · 21.5 KB
/
DetectAndTrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from goturn.logger.logger import setup_logger
from goturn.network.regressor import regressor
from goturn.tracker.tracker import tracker
from goturn.tracker.tracker_manager import tracker_manager
from yolo.detect import *
from DetectAndTrackUtils import *
from videoUtils import *
class DetectAndTrack :
def __init__(self,
VideoInput = None,
output="ouptput",
cfg = 'yolo/model/yolo-drone.cfg',
data = 'yolo/model/yolo-drone.data',
weights = 'yolo/model/yolo-drone_100000_49.weights',
prototxt = 'goturn/nets/tracker.prototxt' ,
model = 'goturn/nets/tracker.caffemodel',
conf_thres = 0.8,
nms_thres = 0.15,
doubleCheckThres= 0.95,
trackingConfidenceThres=0.5,
save_output = False,
show_output = True,
sliding_Detection = False,
RealTimeSimu = False,
saveSmoothVideo = False,
ImportType =None,
VerificationInterval = 5,
State_Flag = "Detection"
):
"""
Initialization of the tracking and detection class.
PARAMETERS:
:param VideoInput: Path to input video
:param output: Path to output folder
:param cfg: YOLO detection configuration file path (eg: yolo-drone.cfg)
:param data: YOLO detection data file path (eg: yolo-drone.data)
:param weights: YOLO detection weights file path (eg: yolo-drone.weights)
:param prototxt: GOTURN tracking prototxt file path (eg: solver.prototxt)
:param model: GOTURN tracking model path (eg: tracker.caffemodel)
:param conf_thres: YOLO detection confidence threshold for detection
:param nms_thres: YOLO detection Non-Maximal Suppression threshold => keep only best bounding box
:param doubleCheckThres: Confidence threshold above which we do not double check our detection
:param trackingConfidenceThres: Confidence threshold above which we consider the tracker on desired object
:param save_output: Flag => True if you want to save the output
:param show_output: Flag => True if you want to save the output
:param sliding_Detection: Flag => True if you want to detect using a smaller search window, sliding on frame
:param RealTimeSimu: Flag => True if you want to simulate real time performances of algorithm
:param saveSmoothVideo: Flag => True to complete missing frames in output file to get a smooth video
:param ImportType: Type of import of the video ("JetsonCam" or "Queue" or "preLoadVideo")
:param VerificationInterval: Time between two verification of accuracy of tracker [seconds]
:param State_Flag: Initial state of algorithm (eg: "Tracking" or "Detection")
"""
### Initialize Flags
self.State_Flag = State_Flag
self.save_output = save_output
self.show_output = show_output
self.sliding_Detection = sliding_Detection
self.RealTimeSimu = RealTimeSimu
self.saveSmoothVideo = saveSmoothVideo
### Initialize constants
self.conf_thres = conf_thres
self.nms_thres = nms_thres
self.doubleCheckThres = doubleCheckThres
self.trackingConfidenceThres = trackingConfidenceThres
self.VerificationInterval = VerificationInterval
self.frameCount = 0
### Initialize simulation of real time
self.TimeSimulation = 0
self.time_trackingWV = 0 # Time passed since last verification
self.trackingConfidence = 0
self.meanfps = 30
# Import input video
if ImportType =="Pre-load":
self.video = VideoReader(VideoInput,500)
if ImportType =="Queue":
self.video = VideoReaderQueue(VideoInput)
elif ImportType =="JetsonCam":
### Jetson Camera
self.video = cv2.VideoCapture(
"nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)1280, height=(int)720,format=(string)I420, "
"framerate=(fraction)20/1 ! nvvidconv flip-method=0 ! video/x-raw, format=(string)BGRx ! videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink")
### Laptop webcam
# self.video = cv2.VideoCapture(0)
self.RealTimeSimu = False # If on camera the real time doesn't need to be simulated
else:
self.video = cv2.VideoCapture(VideoInput)
self.FPS = int(self.video.get(cv2.CAP_PROP_FPS))
if self.FPS == 0:
print('Error while importing video. Check video path.')
exit()
# Initialize detector
self.detector = Frame_detecter(cfg, data, weights, output, img_size=416)
self.detectionList = DetecterList()
# Initialize tracker
logger = setup_logger(logfile=None)
self.objRegressor = regressor(prototxt, model, logger)
self.objTracker = tracker(self.objRegressor)
self.trackingList = TrackerList()
self.numframes = self.video.get(cv2.CAP_PROP_FRAME_COUNT)
if self.State_Flag == "Tracking":
### If we start with tracking, GUI allowing to chose the object to track
ok, frame_0 = self.video.read()
self.frameCount +=1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
box_0 = cv2.selectROI(frame_0)
cv2.destroyAllWindows()
bbox = BoundingBox(x1=box_0[0], y1=box_0[1], x2=box_0[0] + box_0[2], y2=box_0[1] + box_0[3])
### Init Goturn tracking
self.objTracker.init(frame_0, bbox, self.objRegressor)
if sliding_Detection:
### Computing frame sliding steps (made so that all cropped frames are 416x416)
self.winStepHeight = int((self.video.get(cv2.CAP_PROP_FRAME_HEIGHT) - 416) /
(int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT) / 416)))
self.winStepWidth = int((self.video.get(cv2.CAP_PROP_FRAME_WIDTH) - 416) /
(int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH) / 416)))
if self.save_output:
### Init of the outpput file
inputName = VideoInput.split('/')[-1:][0].split('.')[:-1][0]
output_video_name = 'output/' + inputName + '_DetectAndTrack' + time.strftime(
"_%-Y-%m-%d_%H-%M") + '.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
if self.saveSmoothVideo:
self.outVideo = VideoSaver(output_video_name, fourcc, self.FPS, width, height)
self.outVideo.AddIntroFrame(inputName, height, width, self.conf_thres, self.nms_thres,
self.doubleCheckThres, self.trackingConfidenceThres,
self.VerificationInterval, self.RealTimeSimu,
weights)
else:
self.outVideo = cv2.VideoWriter(output_video_name, fourcc, self.FPS, (width, height))
def track(self):
"""
Tracking of the drone using caffe implementation of GoTurn Algorithm.
Every time interval ("VerificationInterval"), YOLO detection is used to enhance tracking accuracy as well as
to verify if the tracker hasn't lost the object.
"""
if self.RealTimeSimu:
### Simulate real time by taking the next frame according to computation time past for last itteration.
self.frameCount = round(self.TimeSimulation * self.FPS + 0.5)
print('Tracking on frame:' + str(self.frameCount) + '/' + str(self.numframes))
self.video.set(1, self.frameCount)
ok, frame = self.video.read()
self.frameCount += 1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
### Start timer
timeA = time.time()
### Update Tracker
bbox = self.objTracker.track(frame, self.objRegressor)
### If you want to keep a list of all prev pos of tracker => uncomment next line
# self.trackingList.add(self.frameCount-1, bbox, self.trackingConfidence)
### Calculate tracking speed Frames per second (FPS)
timeB = time.time()
self.meanfps = (self.meanfps*5 +1 / (timeB - timeA))/6
self.TimeSimulation += timeB - timeA
self.time_trackingWV += timeB - timeA
print('Frame' + str(self.frameCount)+' Tracking time: '+str(round(timeB - timeA,3)*1000)+'ms')
if self.show_output or self.save_output:
ImageDraw = plotTracking(frame, bbox, self.trackingConfidence, self.meanfps)
if self.show_output:
cv2.imshow('Results', ImageDraw)
cv2.waitKey(1)
if self.save_output:
if self.saveSmoothVideo:
self.outVideo.write(ImageDraw, self.frameCount)
else:
self.outVideo.write(ImageDraw)
### Check if tracker indeed on a drone
if self.time_trackingWV > self.VerificationInterval:
ok = False
i = 0
while not ok and i < 3:
### This loop allows to look for the drone in the next 3 frames.
i +=1
ok = self.VerifyTracker(bbox)
if not ok:
self.State_Flag = "Detection"
print('Tracker Lost => State = Detection')
def VerifyTracker(self, bbox_prev):
### Reinitialize the time since last verification to zero
self.time_trackingWV = 0
### Read frame
if self.RealTimeSimu:
### Simulate real time by taking the next frame according to computation time past for last itteration.
self.frameCount = round(self.TimeSimulation* self.FPS + 0.5)
print('Checking Detection on frame:' + str(self.frameCount) + '/' + str(self.numframes))
self.video.set(1, self.frameCount)
ok, frame = self.video.read()
self.frameCount += 1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
### Start timmer
timeA = time.time()
### Detection on tracker's neighbourhood
### This neighbourhood has shown best results for our case but it could be different.
x_min = int(max(bbox_prev.get_center_x()-min(bbox_prev.get_width()*4,208), 0))
x_max = int(min(bbox_prev.get_center_x()+min(bbox_prev.get_width()*4,208), frame.shape[1]))
y_min = int(max(bbox_prev.get_center_y()-min(bbox_prev.get_height()*4,208), 0))
y_max = int(min(bbox_prev.get_center_y()+min(bbox_prev.get_height()*4,208), frame.shape[0]))
croped_frame = frame[y_min:y_max, x_min:x_max]
DetectFlag, BBox, self.trackingConfidence = self.detector.detectFrame(croped_frame,
conf_thres=self.trackingConfidenceThres,
nms_thres=self.nms_thres)
### Stop timmer
timeB = time.time()
self.TimeSimulation += timeB - timeA
self.meanfps = (self.meanfps*5 +1/(timeB-timeA))/6
print('Frame'+str(self.frameCount)+' Verification of tracker: '+str(round(timeB - timeA,3)*1000)+'ms')
if DetectFlag:
### Adapt detection to the complete frame coordinates
detecBBox = BBox[0]
detecBBox.x1 += x_min
detecBBox.x2 += x_min
detecBBox.y1 += y_min
detecBBox.y2 += y_min
### Update the tracker
self.objTracker.update(frame, detecBBox)
if self.show_output or self.save_output:
if DetectFlag:
### Show tracker
frame = plotTracking(frame, detecBBox, self.trackingConfidence, self.meanfps)
if self.show_output:
cv2.imshow('Results', frame)
cv2.waitKey(1)
if self.save_output:
if self.saveSmoothVideo:
self.outVideo.write(frame, self.frameCount)
else:
self.outVideo.write(frame)
return DetectFlag
def detect(self):
"""
Detection based on YOLO detection algorithm.
Step 1: Looks for a drone in the entire frame usually [1080,1920]
Step 2: If didn't detect a drone => Scanning with a sliding window of 416*416
"""
### Read frame
if self.RealTimeSimu:
### Simulate real time by taking the next frame according to computation time past for last itteration.
self.frameCount = round(self.TimeSimulation * self.FPS + 0.5)
print('Detecting on frame:' + str(self.frameCount) + '/' + str(self.numframes))
self.video.set(1, self.frameCount)
ok, frame = self.video.read()
self.frameCount += 1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
### Start timer
timeA = time.time()
### Detecting on the complete frame
DetectFlag, BBox, confidence = self.detector.divideAndDetectFrame(frame,
conf_thres=self.conf_thres,
nms_thres=self.nms_thres,
slidingFlag=False,
show_image=False)
### Stop timer
timeB = time.time()
self.TimeSimulation += timeB - timeA
print("Detection time :" +str(round(timeB - timeA,2))+'sec')
if DetectFlag:
### If drone detected => Initialize the tracking and switches the State to "Tracking"
bbox =BBox[0]
### If you want to keep a list of all detection uncomment next line.
# self.detectionList.add(self.frameCount-1,bbox, confidence)
### Initialize tracker
self.trackingConfidence = confidence
self.objTracker.init(frame, bbox, self.objRegressor)
self.State_Flag ="Tracking"
if confidence[0] < self.doubleCheckThres:
### If the confidence is smaller than "doubleCheckThres" => recheck on next frame if it is a drone indeed
self.time_trackingWV = self.VerificationInterval
else:
self.time_trackingWV = 0
if self.show_output or self.save_output:
if DetectFlag:
ImageDraw = plotDetection(frame, DetectFlag, bbox=bbox, confidence = confidence[0])
else:
ImageDraw = plotDetection(frame, DetectFlag)
if self.show_output:
cv2.imshow('Results', ImageDraw)
cv2.waitKey(1)
if self.save_output:
if self.saveSmoothVideo:
self.outVideo.write(ImageDraw, self.frameCount)
else:
self.outVideo.write(ImageDraw)
### If a drone wasn't detected on complete frame, scan the frame with sliding window.
if not DetectFlag:
DetectFlag, BBox, confidence = self.detectSlidingWinRealTime(frame, conf_thres=self.conf_thres,
nms_thres=self.nms_thres,
show_image=False)
def detectSlidingWinRealTime(self,
img_size=416, # Size of Image for Yolo_network
conf_thres=0.5, # Confidence threshold
nms_thres=0.5, # Non-Maximal Suppression Threshold
SlidingWinSize =416, #Sliding window size recommanded to use yolo network size win.
save_images=False,
show_image=False):
"""
This function will scan the complete frame in order to look for a drone. The smaller croped image allows
increased accuracy in detection.
This function scans in real time, meaning each subframe is croped from the current frame.
:param img_size:
:param conf_thres:
:param nms_thres:
:param SlidingWinSize:
:param save_images:
:param show_image:
:return:
"""
### Loop initialization
if self.RealTimeSimu:
### Simulate real time by taking the next frame according to computation time past for last itteration.
self.frameCount = round(self.TimeSimulation * self.FPS+0.5)
print('Detecting on frame:' + str(self.frameCount) + '/' + str(self.numframes))
self.video.set(1, self.frameCount)
ok, frame = self.video.read()
self.frameCount +=1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
DetectFlag = False
cropWidth = 0
### Scanning
while cropWidth + SlidingWinSize <= frame.shape[1] and not DetectFlag:
cropHeight = 0
while cropHeight + SlidingWinSize <= frame.shape[0] and not DetectFlag:
### Read current frame
if self.RealTimeSimu:
### Simulate real time by taking the next frame according to computation time past for last itteration.
self.frameCount = round(self.TimeSimulation * self.FPS +0.5)
print('Detecting on frame:' + str(self.frameCount) + '/' + str(self.numframes))
self.video.set(1, self.frameCount)
ok, frame = self.video.read()
self.frameCount += 1
if not ok:
if self.save_output:
self.outVideo.release()
self.video.release()
exit()
### Start timer
timeA = time.time()
### Cropping frame
frame_cropped = frame[cropHeight : cropHeight+SlidingWinSize, cropWidth : cropWidth+SlidingWinSize]
### Detect on cropped frame
DetectFlag, detecBBox, confidence = self.detector.detectFrame(frame_cropped,
show_image=show_image,save_images=save_images,
conf_thres = conf_thres, nms_thres= nms_thres)
### Stop timer
timeB = time.time()
self.TimeSimulation += timeB -timeA
self.meanfps = (self.meanfps*5 + 1 / (timeB - timeA)) / 6
print( 'subframe: ['+str(cropHeight)+','+str(cropWidth)+']'+" Detection time for subframe:"+
str(round(timeB -timeA,3)*1000)+ 'ms')
if DetectFlag:
### Adapt Bounding box to the non-cropped frame coordinates
detecBBox[0].x1 += cropWidth
detecBBox[0].x2 += cropWidth
detecBBox[0].y1 += cropHeight
detecBBox[0].y2 += cropHeight
if self.show_output or self.save_output:
slidingFrame = showSlidingWindow(frame, cropWidth, cropHeight, SlidingWinSize, self.meanfps)
if DetectFlag:
# Add bbox to the image with label
label = '%s %.2f' % ('Drone', confidence[0])
plot_one_box([detecBBox[0].x1, detecBBox[0].y1, detecBBox[0].x2, detecBBox[0].y2], slidingFrame, label=label)
if self.show_output:
cv2.imshow('Results', slidingFrame)
cv2.waitKey(1)
if self.save_output:
if self.saveSmoothVideo:
self.outVideo.write(slidingFrame, self.frameCount)
else:
self.outVideo.write(slidingFrame)
cropHeight += self.winStepHeight # 332
cropWidth += self.winStepWidth # 376
if DetectFlag:
### If detection => initialize tracking and switch state to "Tracking"
bbox = detecBBox[0]
### If you want to keep a list of all detection uncomment next line.
# self.detectionList.add(self.frameCount-1,bbox, confidence)
### Initialize tracker
self.objTracker.init(frame, bbox, self.objRegressor)
self.State_Flag ="Tracking"
if confidence[0] < self.doubleCheckThres:
### If the confidence is smaller than "doubleCheckThres" => recheck next frame if it is a drone indeed
self.time_trackingWV = self.VerificationInterval
else:
self.time_trackingWV = 0
return DetectFlag, detecBBox, confidence
def Run(self):
"""
Main Running Loop
"""
while True:
if self.State_Flag == "Detection":
self.detect()
elif self.State_Flag == "Tracking":
self.track()