forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialSoftMax.lua
106 lines (93 loc) · 3.22 KB
/
SpatialSoftMax.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
local SpatialSoftMax, parent = torch.class('cudnn.SpatialSoftMax', 'nn.Module')
local errcheck = cudnn.errcheck
function SpatialSoftMax:__init(fast)
parent.__init(self)
if fast then
self.algorithm = 'CUDNN_SOFTMAX_FAST'
else
self.algorithm = 'CUDNN_SOFTMAX_ACCURATE'
end
end
function SpatialSoftMax:createIODescriptors(input)
self.mode = self.mode or 'CUDNN_SOFTMAX_MODE_CHANNEL'
-- after converting from nn use accurate
self.algorithm = self.algorithm or 'CUDNN_SOFTMAX_ACCURATE'
self.iSize = self.iSize or torch.LongStorage(4):fill(0)
local batch = true
local singleDim = false
if input:dim() == 1 then
singleDim = true
batch = false
input = input:view(1, input:size(1), 1, 1)
elseif input:dim() == 2 then
singleDim = true
input = input:view(input:size(1), input:size(2), 1, 1)
elseif input:dim() == 3 then
input = input:view(1, input:size(1), input:size(2), input:size(3))
batch = false
end
assert(input:dim() == 4 and input:isContiguous());
if not self.iDesc or not self.oDesc or
input:size(1) ~= self.iSize[1] or input:size(2) ~= self.iSize[2]
or input:size(3) ~= self.iSize[3] or input:size(4) ~= self.iSize[4] then
self.iSize = input:size()
self.output:resizeAs(input)
self.iDesc = cudnn.toDescriptor(input)
self.oDesc = cudnn.toDescriptor(self.output)
if not singleDim and not batch then
self.output = self.output:view(self.output:size(2),
self.output:size(3),
self.output:size(4))
elseif singleDim and not batch then
self.output = self.output:view(self.output:size(2))
elseif singleDim and batch then
self.output = self.output:view(self.output:size(1), self.output:size(2))
end
end
end
function SpatialSoftMax:updateOutput(input)
self:createIODescriptors(input)
errcheck('cudnnSoftmaxForward',
cudnn.getHandle(),
self.algorithm, self.mode,
cudnn.scalar(input, 1),
self.iDesc[0], input:data(),
cudnn.scalar(input, 0),
self.oDesc[0], self.output:data());
return self.output
end
function SpatialSoftMax:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input)
if not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
self:createIODescriptors(input)
errcheck('cudnnSoftmaxBackward',
cudnn.getHandle(),
self.algorithm, self.mode,
cudnn.scalar(input, 1),
self.oDesc[0], self.output:data(),
self.oDesc[0], gradOutput:data(),
cudnn.scalar(input, 0),
self.iDesc[0], self.gradInput:data());
return self.gradInput
end
function SpatialSoftMax:clearDesc()
self.iDesc = nil
self.oDesc = nil
end
function SpatialSoftMax:write(f)
self:clearDesc()
local var = {}
for k,v in pairs(self) do
var[k] = v
end
f:writeObject(var)
end
function SpatialSoftMax:clearState()
self:clearDesc()
nn.utils.clear(self, '_gradOutput')
return parent.clearState(self)
end