-
Notifications
You must be signed in to change notification settings - Fork 0
/
nsfwnet.py
120 lines (99 loc) · 4 KB
/
nsfwnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python
"""
Copyright 2016 Yahoo Inc.
Licensed under the terms of the 2 clause BSD license.
Please see LICENSE file in the project root for terms.
"""
import numpy as np
import os
import sys
import argparse
import glob
import time
from PIL import Image
from StringIO import StringIO
# Link to prevent OpenCV error
if not os.path.exists("/dev/raw1394"):
os.system("ln /dev/null /dev/raw1394")
# Reduce verbosity
os.environ['GLOG_minloglevel'] = '2'
import caffe
nsfwnet = None
def resize_image(data, sz=(256, 256)):
"""
Resize image. Please use this resize logic for best results instead of the
caffe, since it was used to generate training dataset
:param str data:
The image data
:param sz tuple:
The resized image dimensions
:returns bytearray:
A byte array with the resized image
"""
img_data = str(data)
im = Image.open(StringIO(img_data))
if im.mode != "RGB":
im = im.convert('RGB')
imr = im.resize(sz, resample=Image.BILINEAR)
fh_im = StringIO()
imr.save(fh_im, format='JPEG')
fh_im.seek(0)
return bytearray(fh_im.read())
def caffe_preprocess_and_compute(pimg, caffe_transformer=None, caffe_net=None,
output_layers=None):
"""
Run a Caffe network on an input image after preprocessing it to prepare
it for Caffe.
:param PIL.Image pimg:
PIL image to be input into Caffe.
:param caffe.Net caffe_net:
A Caffe network with which to process pimg afrer preprocessing.
:param list output_layers:
A list of the names of the layers from caffe_net whose outputs are to
to be returned. If this is None, the default outputs for the network
are returned.
:return:
Returns the requested outputs from the Caffe net.
"""
if caffe_net is not None:
# Grab the default output names if none were requested specifically.
if output_layers is None:
output_layers = caffe_net.outputs
img_data_rs = resize_image(pimg, sz=(256, 256))
image = caffe.io.load_image(StringIO(img_data_rs))
H, W, _ = image.shape
_, _, h, w = caffe_net.blobs['data'].data.shape
h_off = max((H - h) / 2, 0)
w_off = max((W - w) / 2, 0)
crop = image[h_off:h_off + h, w_off:w_off + w, :]
transformed_image = caffe_transformer.preprocess('data', crop)
transformed_image.shape = (1,) + transformed_image.shape
input_name = caffe_net.inputs[0]
all_outputs = caffe_net.forward_all(blobs=output_layers,
**{input_name: transformed_image})
outputs = all_outputs[output_layers[0]][0].astype(float)
return outputs
else:
return []
class NsfwNet(object):
model_def = '/workspace/open_nsfw/nsfw_model/deploy.prototxt'
pretrained_model = '/workspace/open_nsfw/nsfw_model/resnet_50_1by2_nsfw.caffemodel'
def __init__(self):
self.nsfw_net = caffe.Net(self.model_def, # pylint: disable=invalid-name
self.pretrained_model, caffe.TEST)
self.caffe_transformer = caffe.io.Transformer({'data': self.nsfw_net.blobs['data'].data.shape})
self.caffe_transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost
self.caffe_transformer.set_mean('data', np.array([104, 117, 123])) # subtract the dataset-mean value in each channel
self.caffe_transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
self.caffe_transformer.set_channel_swap('data', (2, 1, 0)) # swap channels from RGB to BGR
def classify(self,image_data):
scores = caffe_preprocess_and_compute(image_data, caffe_transformer=self.caffe_transformer, caffe_net=self.nsfw_net, output_layers=['prob'])
# Scores is the array containing SFW / NSFW image probabilities
# scores[1] indicates the NSFW probability
return scores[1]
nsfwnet = NsfwNet()
if __name__ == "__main__":
import glob
n = NsfwNet()
for fn in glob.glob('*.jpg'):
n.classify(open(fn).read())