Distributional Alignment with LoRA to Larger Models
CS182 {joshua.liao, bplate, carolinewu01, patrickgu}@berkeley.edu
Code adapted from https://github.com/cloneofsimo/lora.
For results and analysis, please read pdf file "Project Report"
pip install git+https://github.com/cloneofsimo/lora.git
export MODEL_NAME="stable-diffusion-v1-5"
export INSTANCE_DIR="./data/real_images"
export OUTPUT_DIR="./output/model"
lora_pti \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--train_text_encoder \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--scale_lr \
--learning_rate_unet=1e-4 \
--learning_rate_text=1e-5 \
--learning_rate_ti=5e-4 \
--color_jitter \
--lr_scheduler="linear" \
--lr_warmup_steps=0 \
--placeholder_tokens="<s1>|<s2>" \
--use_template="style"\
--save_steps=100 \
--max_train_steps_ti=1000 \
--max_train_steps_tuning=1000 \
--perform_inversion=True \
--clip_ti_decay \
--weight_decay_ti=0.000 \
--weight_decay_lora=0.001\
--continue_inversion \
--continue_inversion_lr=1e-4 \
--device="cuda:0" \
--lora_rank=1 \
Training data can be found in the real_images folder. fake_images are generated by the base stable-diffusion model