-
Notifications
You must be signed in to change notification settings - Fork 117
/
multi.py
executable file
·532 lines (458 loc) · 21.9 KB
/
multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#! /usr/bin/env python
# each job has a working-set size
# if it runs "in cache", it runs at rate X
# "out of cache", rate Y (slower than X)
# sched policies
# - centralized
# one queue,
# - distributed
# many queues
from __future__ import print_function
from collections import *
from optparse import OptionParser
import random
# helper print function for columnar output
def print_cpu(cpu, str):
print((' ' * cpu * 35) + str)
return
#
# Job struct: tracks everything about each job
#
Job = namedtuple('Job', ['name', 'run_time', 'working_set_size', 'affinity', 'time_left'])
#
# class cache
#
# key question: how does a cache get warmed?
# simple model here:
# - run for 'cache_warmup_time' on CPU
# - after that amount of time on CPU, cache is "warm" for you
# cache has limited size, so only so many jobs can be "warm" at a time
#
class cache:
def __init__(self, cpu_id, jobs, cache_size, cache_rate_cold, cache_rate_warm, cache_warmup_time):
self.cpu_id = cpu_id
self.jobs = jobs
self.cache_size = cache_size
self.cache_rate_cold = cache_rate_cold
self.cache_rate_warm = cache_rate_warm
self.cache_warmup_time = cache_warmup_time
# cache_contents
# - should track whose working sets are in the cache
# - it's a list of job_names that
# * is len>=1, and the SUM of working sets fits into the cache
# OR
# * len=1 and whose working set may indeed be too big
self.cache_contents = []
# cache_warming(cpu)
# - list of job_name that are trying to warm up this cache right now
# cache_warming_counter(cpu, job)
# - counter for each, showing how long until the cache is warm for that job
self.cache_warming = []
self.cache_warming_counter = {}
return
def new_job(self, job_name):
if job_name not in self.cache_contents and job_name not in self.cache_warming:
# print_cpu(self.cpu_id, '*new cache*')
if self.cache_warmup_time == 0:
# special case (alas): no warmup, just right into cache
self.cache_contents.insert(0, job_name)
self.adjust_size()
else:
self.cache_warming.append(job_name)
self.cache_warming_counter[job_name] = cache_warmup_time
return
def total_working_set(self):
cache_sum = 0
for job_name in self.cache_contents:
cache_sum += self.jobs[job_name].working_set_size
return cache_sum
def adjust_size(self):
working_set_total = self.total_working_set()
while working_set_total > self.cache_size:
last_entry = len(self.cache_contents) - 1
job_gone = self.cache_contents[last_entry]
# print_cpu(self.cpu_id, 'kicking out %s' % job_gone)
del self.cache_contents[last_entry]
self.cache_warming.append(job_gone)
self.cache_warming_counter[job_gone] = cache_warmup_time
working_set_total -= self.jobs[job_gone].working_set_size
return
def get_cache_state(self, job_name):
if job_name in self.cache_contents:
return 'w'
else:
return ' '
def get_rate(self, job_name):
if job_name in self.cache_contents:
return self.cache_rate_warm
else:
return self.cache_rate_cold
def update_warming(self, job_name):
if job_name in self.cache_warming:
self.cache_warming_counter[job_name] -= 1
if self.cache_warming_counter[job_name] <= 0:
self.cache_warming.remove(job_name)
self.cache_contents.insert(0, job_name)
self.adjust_size()
# print_cpu(self.cpu_id, '*warm cache*')
return
#
# class scheduler
#
# imitates a multi-CPU scheduler
#
class scheduler:
def __init__(self, job_list, per_cpu_queues, affinity, peek_interval,
job_num, max_run, max_wset,
num_cpus, time_slice, random_order,
cache_size, cache_rate_cold, cache_rate_warm, cache_warmup_time,
solve, trace, trace_time_left, trace_cache, trace_sched):
if job_list == '':
# this means randomly generate jobs
for j in range(job_num):
run_time = int((random.random() * max_run)/10.0) * 10
working_set = int((random.random() * max_wset)/10.0) * 10
if job_list == '':
job_list = '%s:%d:%d' % (str(j), run_time, working_set)
else:
job_list += (',%s:%d:%d' % (str(j), run_time, working_set))
# just the job names
self.job_name_list = []
# info about each job
self.jobs = {}
for entry in job_list.split(','):
tmp = entry.split(':')
if len(tmp) != 3:
print('bad job description [%s]: needs triple of name:runtime:working_set_size' % entry)
exit(1)
job_name, run_time, working_set_size = tmp[0], int(tmp[1]), int(tmp[2])
self.jobs[job_name] = Job(name=job_name, run_time=run_time, working_set_size=working_set_size, affinity=[], time_left=[run_time])
print('Job name:%s run_time:%d working_set_size:%d' % (job_name, run_time, working_set_size))
# self.sched_queue.append(job_name)
if job_name in self.job_name_list:
print('repeated job name %s' % job_name)
exit(1)
self.job_name_list.append(job_name)
print('')
# parse the affinity list
if affinity != '':
for entry in affinity.split(','):
# form is 'job_name:cpu.cpu.cpu'
# where job_name is the name of an existing job
# and cpu is an ID of a particular CPU (0 ... max_cpus-1)
tmp = entry.split(':')
if len(tmp) != 2:
print('bad affinity spec %s' % affinity)
exit(1)
job_name = tmp[0]
if job_name not in self.job_name_list:
print('job name %s in affinity list does not exist' % job_name)
exit(1)
for cpu in tmp[1].split('.'):
self.jobs[job_name].affinity.append(int(cpu))
if int(cpu) < 0 or int(cpu) >= num_cpus:
print('bad cpu %d specified in affinity %s' % (int(cpu), affinity))
exit(1)
# now, assign jobs to either ALL the one queue, or to each of the queues in RR style
# (as constrained by affinity specification)
self.per_cpu_queues = per_cpu_queues
self.per_cpu_sched_queue = {}
if self.per_cpu_queues:
for cpu in range(num_cpus):
self.per_cpu_sched_queue[cpu] = []
# now assign jobs to these queues
jobs_not_assigned = list(self.job_name_list)
while len(jobs_not_assigned) > 0:
for cpu in range(num_cpus):
assigned = False
for job_name in jobs_not_assigned:
if len(self.jobs[job_name].affinity) == 0 or cpu in self.jobs[job_name].affinity:
self.per_cpu_sched_queue[cpu].append(job_name)
jobs_not_assigned.remove(job_name)
assigned = True
if assigned:
break
for cpu in range(num_cpus):
print('Scheduler CPU %d queue: %s' % (cpu, self.per_cpu_sched_queue[cpu]))
print('')
else:
# assign them all to same single queue
self.single_sched_queue = []
for job_name in self.job_name_list:
self.single_sched_queue.append(job_name)
for cpu in range(num_cpus):
self.per_cpu_sched_queue[cpu] = self.single_sched_queue
print('Scheduler central queue: %s\n' % (self.single_sched_queue))
self.num_jobs = len(self.job_name_list)
self.peek_interval = peek_interval
self.num_cpus = num_cpus
self.time_slice = time_slice
self.random_order = random_order
self.solve = solve
self.trace = trace
self.trace_time_left = trace_time_left
self.trace_cache = trace_cache
self.trace_sched = trace_sched
# tracking each CPU: is it idle or running a job?
self.STATE_IDLE = 1
self.STATE_RUNNING = 2
# the scheduler state (RUNNING or IDLE) of each CPU
self.sched_state = {}
for cpu in range(self.num_cpus):
self.sched_state[cpu] = self.STATE_IDLE
# if a job is running on a CPU, which job is it
self.sched_current = {}
for cpu in range(self.num_cpus):
self.sched_current[cpu] = ''
# just some stats
self.stats_ran = {}
self.stats_ran_warm = {}
for cpu in range(self.num_cpus):
self.stats_ran[cpu] = 0
self.stats_ran_warm[cpu] = 0
# scheduler (because it runs the simulation) also instantiates and updates each cache
self.caches = {}
for cpu in range(self.num_cpus):
self.caches[cpu] = cache(cpu, self.jobs, cache_size, cache_rate_cold, cache_rate_warm, cache_warmup_time)
return
def handle_one_interrupt(self, interrupt, cpu):
# HANDLE: interrupts here, so jobs don't run an extra tick
if interrupt and self.sched_state[cpu] == self.STATE_RUNNING:
self.sched_state[cpu] = self.STATE_IDLE
job_name = self.sched_current[cpu]
self.sched_current[cpu] = ''
# print_cpu(cpu, 'tick done for job %s' % job_name)
self.per_cpu_sched_queue[cpu].append(job_name)
return
def handle_interrupts(self):
if self.system_time % self.time_slice == 0 and self.system_time > 0:
interrupt = True
# num_to_print = time + per-cpu info + cache status for each job - last set of space
num_to_print = 8 + (7 * self.num_cpus) - 5
if self.trace_time_left:
num_to_print += 6 * self.num_cpus
if self.trace_cache:
num_to_print += 8 * self.num_cpus + self.num_jobs * (self.num_cpus)
if self.trace:
print('-' * num_to_print)
else:
interrupt = False
if self.trace:
print(' %3d ' % self.system_time, end='')
# INTERRUPTS first: this might deschedule a job, putting it into a runqueue
for cpu in range(self.num_cpus):
self.handle_one_interrupt(interrupt, cpu)
return
def get_job(self, cpu, sched_queue):
# get next job?
for job_index in range(len(sched_queue)):
job_name = sched_queue[job_index]
# len(affinity) == 0 is special case, which means ANY cpu is fine
if len(self.jobs[job_name].affinity) == 0 or cpu in self.jobs[job_name].affinity:
# extract job from runqueue, put in CPU local structures
sched_queue.pop(job_index)
self.sched_state[cpu] = self.STATE_RUNNING
self.sched_current[cpu] = job_name
self.caches[cpu].new_job(job_name)
# print('got job %s' % job_name)
return
return
def assign_jobs(self):
if self.random_order:
cpu_list = list(range(self.num_cpus))
random.shuffle(cpu_list)
else:
cpu_list = range(self.num_cpus)
for cpu in cpu_list:
if self.sched_state[cpu] == self.STATE_IDLE:
self.get_job(cpu, self.per_cpu_sched_queue[cpu])
def print_sched_queues(self):
# PRINT queue information
if not self.trace_sched:
return
if self.per_cpu_queues:
for cpu in range(self.num_cpus):
print('Q%d: ' % cpu, end='')
for job_name in self.per_cpu_sched_queue[cpu]:
print('%s ' % job_name, end='')
print(' ', end='')
print(' ', end='')
else:
print('Q: ', end='')
for job_name in self.single_sched_queue:
print('%s ' % job_name, end='')
print(' ', end='')
return
def steal_jobs(self):
if not self.per_cpu_queues or self.peek_interval <= 0:
return
# if it is time to steal
if self.system_time > 0 and self.system_time % self.peek_interval == 0:
for cpu in range(self.num_cpus):
if len(self.per_cpu_sched_queue[cpu]) == 0:
# find IDLE job in some other CPUs queue
other_cpu_list = list(range(self.num_cpus))
other_cpu_list.remove(cpu)
other_cpu = random.choice(other_cpu_list)
# print('cpu %d is idle' % cpu)
# print('-> look at %d' % other_cpu)
for job_name in self.per_cpu_sched_queue[other_cpu]:
# print('---> examine job %s' % job_name)
if len(self.jobs[job_name].affinity) == 0 or cpu in self.jobs[job_name]:
self.per_cpu_sched_queue[other_cpu].remove(job_name)
self.per_cpu_sched_queue[cpu].append(job_name)
# print('stole job %s from %d to %d' % (job_name, other_cpu, cpu))
break
return
def run_one_tick(self, cpu):
job_name = self.sched_current[cpu]
job = self.jobs[job_name]
# USE cache_contents to determine if cache is cold or warm
# (list usage w/ time_left field: a hack to deal with namedtuple and its lack of mutability)
current_rate = self.caches[cpu].get_rate(job_name)
self.stats_ran[cpu] += 1
if current_rate > 1:
self.stats_ran_warm[cpu] += 1
time_left = job.time_left.pop() - current_rate
if time_left < 0:
time_left = 0
job.time_left.append(time_left)
if self.trace:
print('%s ' % job.name, end='')
if self.trace_time_left:
print('[%3d] ' % job.time_left[0], end='')
# UPDATE: cache warming
self.caches[cpu].update_warming(job_name)
if time_left <= 0:
self.sched_state[cpu] = self.STATE_IDLE
job_name = self.sched_current[cpu]
self.sched_current[cpu] = ''
# remember: it is time X now, but job ran through this tick, so finished at X + 1
# print_cpu(cpu, 'finished %s at time %d' % (job_name, self.system_time + 1))
self.jobs_finished += 1
return
def run_jobs(self):
for cpu in range(self.num_cpus):
if self.sched_state[cpu] == self.STATE_RUNNING:
self.run_one_tick(cpu)
elif self.trace:
print('- ', end='')
if self.trace_time_left:
print('[ ] ', end='')
# PRINT: cache state
cache_string = ''
for job_name in self.job_name_list:
# cache_string += '%s%s ' % (job_name, self.caches[cpu].get_cache_state(job_name))
cache_string += '%s' % self.caches[cpu].get_cache_state(job_name)
if self.trace:
if self.trace_cache:
print('cache[%s]' % cache_string, end='')
print(' ', end='')
return
#
# MAIN SIMULATION
#
def run(self):
# things to track
self.system_time = 0
self.jobs_finished = 0
while self.jobs_finished < self.num_jobs:
# interrupts: may cause end of a tick, thus making job schedulable elsewhere
self.handle_interrupts()
# if it's time, do some job stealing
self.steal_jobs()
# assign_jobsign news jobs to CPUs (this can happen every tick?)
self.assign_jobs()
# run each CPU for a time slice and handle POSSIBLE end of job
self.run_jobs()
self.print_sched_queues()
# to add a newline after all the job updates
if self.trace:
print('')
# the clock keeps ticking
self.system_time += 1
if self.solve:
print('\nFinished time %d\n' % self.system_time)
print('Per-CPU stats')
for cpu in range(self.num_cpus):
print(' CPU %d utilization %3.2f [ warm %3.2f ]' % (cpu, 100.0 * float(self.stats_ran[cpu])/float(self.system_time),
100.0 * float(self.stats_ran_warm[cpu])/float(self.system_time)))
print('')
return
#
# MAIN PROGRAM
#
parser = OptionParser()
parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed')
parser.add_option('-j', '--job_num', default=3, help='number of jobs in the system', action='store', type='int', dest='job_num')
parser.add_option('-R', '--max_run', default=100, help='max run time of random-gen jobs', action='store', type='int', dest='max_run')
parser.add_option('-W', '--max_wset', default=200, help='max working set of random-gen jobs', action='store', type='int', dest='max_wset')
parser.add_option('-L', '--job_list', default='', help='provide a comma-separated list of job_name:run_time:working_set_size (e.g., a:10:100,b:10:50 means 2 jobs with run-times of 10, the first (a) with working set size=100, second (b) with working set size=50)', action='store', type='string', dest='job_list')
parser.add_option('-p', '--per_cpu_queues', default=False, help='per-CPU scheduling queues (not one)', action='store_true', dest='per_cpu_queues')
parser.add_option('-A', '--affinity', default='', help='a list of jobs and which CPUs they can run on (e.g., a:0.1.2,b:0.1 allows job a to run on CPUs 0,1,2 but b only on CPUs 0 and 1', action='store', type='string', dest='affinity')
parser.add_option('-n', '--num_cpus', default=2, help='number of CPUs', action='store', type='int', dest='num_cpus')
parser.add_option('-q', '--quantum', default=10, help='length of time slice', action='store', type='int', dest='time_slice')
parser.add_option('-P', '--peek_interval', default=30, help='for per-cpu scheduling, how often to peek at other schedule queue; 0 turns this off', action='store', type='int', dest='peek_interval')
parser.add_option('-w', '--warmup_time', default=10, help='time it takes to warm cache', action='store', type='int', dest='warmup_time')
parser.add_option('-r', '--warm_rate', default=2, help='how much faster to run with warm cache', action='store', type='int', dest='warm_rate')
parser.add_option('-M', '--cache_size', default=100, help='cache size', action='store', type='int', dest='cache_size')
parser.add_option('-o', '--rand_order', default=False, help='has CPUs get jobs in random order', action='store_true', dest='random_order')
parser.add_option('-t', '--trace', default=False, help='enable basic tracing (show which jobs got scheduled)', action='store_true', dest='trace')
parser.add_option('-T', '--trace_time_left', default=False, help='trace time left for each job', action='store_true', dest='trace_time_left')
parser.add_option('-C', '--trace_cache', default=False, help='trace cache status (warm/cold) too', action='store_true', dest='trace_cache')
parser.add_option('-S', '--trace_sched', default=False, help='trace scheduler state', action='store_true', dest='trace_sched')
parser.add_option('-c', '--compute', default=False, help='compute answers for me', action='store_true', dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
print('ARG seed %s' % options.seed)
print('ARG job_num %s' % options.job_num)
print('ARG max_run %s' % options.max_run)
print('ARG max_wset %s' % options.max_wset)
print('ARG job_list %s' % options.job_list)
print('ARG affinity %s' % options.affinity)
print('ARG per_cpu_queues %s' % options.per_cpu_queues)
print('ARG num_cpus %s' % options.num_cpus)
print('ARG quantum %s' % options.time_slice)
print('ARG peek_interval %s' % options.peek_interval)
print('ARG warmup_time %s' % options.warmup_time)
print('ARG cache_size %s' % options.cache_size)
print('ARG random_order %s' % options.random_order)
print('ARG trace %s' % options.trace)
print('ARG trace_time %s' % options.trace_time_left)
print('ARG trace_cache %s' % options.trace_cache)
print('ARG trace_sched %s' % options.trace_sched)
print('ARG compute %s' % options.solve)
print('')
#
# JOBS
#
job_list = options.job_list
job_num = int(options.job_num)
max_run = int(options.max_run)
max_wset = int(options.max_wset)
#
# MACHINE
#
num_cpus = int(options.num_cpus)
time_slice = int(options.time_slice)
#
# CACHES
#
cache_size = int(options.cache_size)
cache_rate_warm = int(options.warm_rate)
cache_warmup_time = int(options.warmup_time)
do_trace = options.trace
if options.trace_time_left or options.trace_cache or options.trace_sched:
do_trace = True
#
# SCHEDULER (and simulator)
#
S = scheduler(job_list=job_list, affinity=options.affinity, per_cpu_queues=options.per_cpu_queues, peek_interval=options.peek_interval,
job_num=job_num, max_run=max_run, max_wset=max_wset,
num_cpus=num_cpus, time_slice=time_slice, random_order=options.random_order,
cache_size=cache_size, cache_rate_cold=1, cache_rate_warm=cache_rate_warm,
cache_warmup_time=cache_warmup_time, solve=options.solve,
trace=do_trace, trace_time_left=options.trace_time_left, trace_cache=options.trace_cache,
trace_sched=options.trace_sched)
# Finally, ...
S.run()