-
Notifications
You must be signed in to change notification settings - Fork 11
/
TODO
29 lines (21 loc) · 1.13 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
retry submission 19 but train on ALL patients in train
train one binary network
train a network that should predict ellipse center + size (similar to YOLO)
train a network that, given the ellipse center and the image, tries to generate a human-looking mask
inception module
==================
def Inception5(x, name):
"""
Inception-v2 module as described in Figure 5. of
"Revisiting the inception architecture for computer vision"
"""
x1 = Convolution2D(8, 1, 1, border_mode='same', activation='relu')(x)
x1 = Convolution2D(16, 3, 3, border_mode='same', activation='relu')(x1)
x1 = Convolution2D(16, 3, 3, border_mode='same', activation='relu', subsample=(2, 2))(x1)
x2 = Convolution2D(8, 1, 1, border_mode='same', activation='relu')(x)
x2 = Convolution2D(16, 3, 3, border_mode='same', activation='relu', subsample=(2, 2))(x2)
x3 = MaxPooling2D((2, 2))(x)
x3 = Convolution2D(16, 1, 1, border_mode='same', activation='relu')(x3)
x4 = Convolution2D(16, 1, 1, border_mode='same', subsample=(2, 2))(x)
x = merge([x1, x2, x3, x4], mode='concat', concat_axis=1, name=name)
return x