From fa06f169208a6e927824111a5c4b6819e6d42a8e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Micha=C5=82=20Krassowski?= <5832902+krassowski@users.noreply.github.com> Date: Mon, 30 Oct 2023 22:12:02 +0000 Subject: [PATCH] Apply suggestions from review Co-authored-by: Jason Weill <93281816+JasonWeill@users.noreply.github.com> --- docs/source/users/index.md | 20 +++++++++++--------- 1 file changed, 11 insertions(+), 9 deletions(-) diff --git a/docs/source/users/index.md b/docs/source/users/index.md index 679eb898a..b519f6ea4 100644 --- a/docs/source/users/index.md +++ b/docs/source/users/index.md @@ -161,11 +161,11 @@ provider's pricing information before submitting requests via Jupyter AI. ### Custom model providers -You can define a new provider building upon LangChain framework API. The provider +You can define new providers using the LangChain framework API. Custom providers inherit from both `jupyter-ai`'s ``BaseProvider`` and `langchain`'s [``LLM``][LLM]. You can either import a pre-defined model from [LangChain LLM list][langchain_llms], or define a [custom LLM][custom_llm]. -In the example below, we demonstrate defining a provider with two models using +In the example below, we define a provider with two models using a dummy ``FakeListLLM`` model, which returns responses from the ``responses`` keyword argument. @@ -194,10 +194,11 @@ class MyProvider(BaseProvider, FakeListLLM): ``` -The provider will be available for both chat and magic usage if it inherits from -[``BaseChatModel``][BaseChatModel] or otherwise only in the magic. +If the new provider inherits from [``BaseChatModel``][BaseChatModel], it will be available +both in the chat UI and with magic commands. Otherwise, users can only use the new provider +with magic commands. -To plug the new provider you will need declare it via an [entry point](https://setuptools.pypa.io/en/latest/userguide/entry_point.html): +To make the new provider available, you need to declare it as an [entry point](https://setuptools.pypa.io/en/latest/userguide/entry_point.html): ```toml # my_package/pyproject.toml @@ -216,10 +217,11 @@ To test that the above minimal provider package works, install it with: pip install -e . ``` -and restart JupyterLab which now should include a log with: +Then, restart JupyterLab. You should now see an info message in the log that mentions +your new provider's `id`: ``` -[I 2023-10-29 13:56:16.915 AiExtension] Registered model provider `ai21`. +[I 2023-10-29 13:56:16.915 AiExtension] Registered model provider `my_provider`. ``` [langchain_llms]: https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.llms @@ -228,9 +230,9 @@ and restart JupyterLab which now should include a log with: [BaseChatModel]: https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.base.BaseChatModel.html -### Customising prompt templates +### Customizing prompt templates -To modify the prompt template for a given format, override the implementation of ``get_prompt_template`` method: +To modify the prompt template for a given format, override the ``get_prompt_template`` method: ```python from langchain.prompts import PromptTemplate