-
Notifications
You must be signed in to change notification settings - Fork 142
/
SerialSTM.cpp
565 lines (465 loc) · 14.1 KB
/
SerialSTM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016,2017,2018,2019 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#if defined(STM32F10X_MD)
#include "Globals.h"
#include "SerialPort.h"
#include "I2CHost.h"
#if defined(STM32_USB_HOST)
#include <usb_serial.h>
#endif
/*
Pin definitions:
- Host communication:
1) USART1 - TXD PA9 - RXD PA10
2) USB VCOM
3) I2C - SCL PB10 - SDA PB11
- Serial repeater
USART2 - TXD PA2 - RXD PA3
*/
#define TX_SERIAL_FIFO_SIZE 256U
#define RX_SERIAL_FIFO_SIZE 256U
#if defined(STM32_USART1_HOST) && defined(STM32_USB_HOST)
#error "You have to select STM32_USART1_HOST or STM32_USB_HOST, but not both"
#endif
#if defined(STM32_USART1_HOST) || defined(SERIAL_REPEATER_USART1)
extern "C" {
void USART1_IRQHandler();
}
/* ************* USART1 ***************** */
volatile uint8_t TXSerialfifo1[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo1[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead1, TXSerialfifotail1;
volatile uint16_t RXSerialfifohead1, RXSerialfifotail1;
// Init queues
void TXSerialfifoinit1()
{
TXSerialfifohead1 = 0U;
TXSerialfifotail1 = 0U;
}
void RXSerialfifoinit1()
{
RXSerialfifohead1 = 0U;
RXSerialfifotail1 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel1()
{
uint32_t tail = TXSerialfifotail1;
uint32_t head = TXSerialfifohead1;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel1()
{
uint32_t tail = RXSerialfifotail1;
uint32_t head = RXSerialfifohead1;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush1()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART1, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput1(uint8_t next)
{
if (TXSerialfifolevel1() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo1[TXSerialfifohead1] = next;
TXSerialfifohead1++;
if (TXSerialfifohead1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead1 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART1_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(USART1, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART1);
if (RXSerialfifolevel1() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo1[RXSerialfifohead1] = c;
RXSerialfifohead1++;
if (RXSerialfifohead1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead1 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
if (USART_GetITStatus(USART1, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead1 != TXSerialfifotail1) { // if the fifo is not empty
c = TXSerialfifo1[TXSerialfifotail1];
TXSerialfifotail1++;
if (TXSerialfifotail1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail1 = 0U;
USART_SendData(USART1, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART1, USART_IT_TXE);
}
}
void InitUSART1(int speed)
{
// USART1 - TXD PA9 - RXD PA10
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 15;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 15;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; // Tx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; // Rx
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
USART_Cmd(USART1, ENABLE);
// initialize the fifos
TXSerialfifoinit1();
RXSerialfifoinit1();
}
uint8_t AvailUSART1()
{
if (RXSerialfifolevel1() > 0U)
return 1U;
else
return 0U;
}
uint8_t ReadUSART1()
{
uint8_t data_c = RXSerialfifo1[RXSerialfifotail1];
RXSerialfifotail1++;
if (RXSerialfifotail1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail1 = 0U;
return data_c;
}
void WriteUSART1(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput1(data[i]);
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
}
#endif
#if defined(SERIAL_REPEATER)
extern "C" {
void USART2_IRQHandler();
}
/* ************* USART2 ***************** */
volatile uint8_t TXSerialfifo2[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo2[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead2, TXSerialfifotail2;
volatile uint16_t RXSerialfifohead2, RXSerialfifotail2;
// Init queues
void TXSerialfifoinit2()
{
TXSerialfifohead2 = 0U;
TXSerialfifotail2 = 0U;
}
void RXSerialfifoinit2()
{
RXSerialfifohead2 = 0U;
RXSerialfifotail2 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel2()
{
uint32_t tail = TXSerialfifotail2;
uint32_t head = TXSerialfifohead2;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel2()
{
uint32_t tail = RXSerialfifotail2;
uint32_t head = RXSerialfifohead2;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush2()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART2, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput2(uint8_t next)
{
if (TXSerialfifolevel2() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo2[TXSerialfifohead2] = next;
TXSerialfifohead2++;
if (TXSerialfifohead2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead2 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART2_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(USART2, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART2);
if (RXSerialfifolevel2() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo2[RXSerialfifohead2] = c;
RXSerialfifohead2++;
if (RXSerialfifohead2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead2 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART2, USART_IT_RXNE);
}
if (USART_GetITStatus(USART2, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead2 != TXSerialfifotail2) { // if the fifo is not empty
c = TXSerialfifo2[TXSerialfifotail2];
TXSerialfifotail2++;
if (TXSerialfifotail2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail2 = 0U;
USART_SendData(USART2, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART2, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART2, USART_IT_TXE);
}
}
void InitUSART2(int speed)
{
// USART2 - TXD PA2 - RXD PA3
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 15;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 15;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // Tx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; // Rx
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_Cmd(USART2, ENABLE);
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
// initialize the fifos
TXSerialfifoinit2();
RXSerialfifoinit2();
}
uint8_t AvailUSART2()
{
if (RXSerialfifolevel2() > 0U)
return 1U;
else
return 0U;
}
uint8_t ReadUSART2()
{
uint8_t data_c = RXSerialfifo2[RXSerialfifotail2];
RXSerialfifotail2++;
if (RXSerialfifotail2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail2 = 0U;
return data_c;
}
void WriteUSART2(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput2(data[i]);
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
}
#endif
/////////////////////////////////////////////////////////////////
#if defined(ENABLE_UDID)
extern char UDID[];
extern "C" {
#include <stdio.h>
}
#endif
void CSerialPort::beginInt(uint8_t n, int speed)
{
#if defined(ENABLE_UDID)
#if defined(STM32F4XX)
uint32_t *id0 = (uint32_t *) (0x1FFF7A10);
uint32_t *id1 = (uint32_t *) (0x1FFF7A10 + 0x04);
uint32_t *id2 = (uint32_t *) (0x1FFF7A10 + 0x08);
::sprintf(UDID, "%08X%08X%08X", *(unsigned int *)id0, *(unsigned int *)id1, *(unsigned int *)id2);
#elif defined(STM32F7XX)
uint32_t *id0 = (uint32_t *) (0x1FF0F420);
uint32_t *id1 = (uint32_t *) (0x1FF0F420 + 0x04);
uint32_t *id2 = (uint32_t *) (0x1FF0F420 + 0x08);
::sprintf(UDID, "%08X%08X%08X", *(unsigned int *)id0, *(unsigned int *)id1, *(unsigned int *)id2);
#elif defined(STM32F10X_MD)
uint16_t *id00 = (uint16_t *) (0x1FFFF7E8);
uint16_t *id01 = (uint16_t *) (0x1FFFF7E8 + 0x02);
uint32_t *id1 = (uint32_t *) (0x1FFFF7E8 + 0x04);
uint32_t *id2 = (uint32_t *) (0x1FFFF7E8 + 0x08);
::sprintf(UDID, "%04X%04X%08X%08X", *id00, *id01, *(unsigned int *)id1, *(unsigned int *)id2);
#endif
#endif
switch (n) {
case 1U:
#if defined(STM32_USART1_HOST)
InitUSART1(speed);
#elif defined(STM32_USB_HOST)
usbserial.begin();
#elif defined(STM32_I2C_HOST)
i2c.Init();
#endif
break;
case 3U:
#if defined(SERIAL_REPEATER)
InitUSART2(speed);
#elif defined(SERIAL_REPEATER_USART1)
InitUSART1(speed);
#endif
break;
default:
break;
}
}
int CSerialPort::availableInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32_USART1_HOST)
return AvailUSART1();
#elif defined(STM32_USB_HOST)
return usbserial.available();
#elif defined(STM32_I2C_HOST)
return i2c.AvailI2C();
#endif
case 3U:
#if defined(SERIAL_REPEATER)
return AvailUSART2();
#elif defined(SERIAL_REPEATER_USART1)
return AvailUSART1();
#endif
default:
return 0;
}
}
uint8_t CSerialPort::readInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32_USART1_HOST)
return ReadUSART1();
#elif defined(STM32_USB_HOST)
return usbserial.read();
#elif defined(STM32_I2C_HOST)
return i2c.ReadI2C();
#endif
case 3U:
#if defined(SERIAL_REPEATER)
return ReadUSART2();
#elif defined(SERIAL_REPEATER_USART1)
return ReadUSART1();
#endif
default:
return 0U;
}
}
void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool flush)
{
switch (n) {
case 1U:
#if defined(STM32_USART1_HOST)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
#elif defined(STM32_USB_HOST)
usbserial.write(data, length);
if (flush)
usbserial.flush();
#elif defined(STM32_I2C_HOST)
i2c.WriteI2C(data, length);
#endif
break;
case 3U:
#if defined(SERIAL_REPEATER)
WriteUSART2(data, length);
if (flush)
TXSerialFlush2();
#elif defined(SERIAL_REPEATER_USART1)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
#endif
break;
default:
break;
}
}
#endif