-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
512 lines (423 loc) · 21.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import time
import logging
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from torch.nn.utils.rnn import pack_padded_sequence
from torch import nn
from models import TransformerModel, TransformerGumbelModel
from diff_chexpert.models import LSTM_Attn
from dataset import *
from utils import *
from nltk.translate.bleu_score import corpus_bleu
import numpy as np
import os
import sys
# Data parameters
data_folder = '/home/ugrads/j/justinlovelace/MIMIC/cxr/data' # folder with data files saved by create_input_files.py
# Model parameters
emb_dim = 256 # dimension of word embeddings
attention_dim = 512 # dimension of attention linear layers
decoder_dim = 512 # dimension of decoder RNN
dropout = 0.5
if torch.cuda.is_available():
device = torch.device("cuda")
else:
print('ERROR GPU UNAVAILABLE')
sys.exit()
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
# Training parameters
model_names = ['TX', 'TXGB']
model_name = model_names[0]
start_epoch = 0
if 'TXGB' in model_name:
epochs = 8 # number of epochs to train for (if early stopping is not triggered)
else:
epochs = 64 # number of epochs to train for (if early stopping is not triggered)
epochs_since_improvement = 0 # keeps track of number of epochs since there's been an improvement in validation BLEU
batch_size = 32
workers = 8 # for data-loading; right now, only 1 works with h5py
decoder_lr = 5e-5 # learning rate for decoder
grad_clip = 1. # clip gradients at an absolute value of
best_bleu4 = 0. # BLEU-4 score right now
best_f1 = 0. # F1 score right now
print_freq = 250 # print training/validation stats every __ batches
checkpoint = False # path to checkpoint, None if none
chexpert_model_name = 'lstm'
if chexpert_model_name == 'lstm':
chexpert_path = os.path.join(data_folder, 'saved_chexpert_models', 'LSTM_ATTN_bs128_lr0.0005_h128', 'BEST_checkpoint.pth.tar') # path to checkpoint, None if none
else:
chexpert_path = os.path.join(data_folder, 'saved_chexpert_models', 'LSTM_ATTN_bs128_lr0.0005_h128', 'BEST_checkpoint.pth.tar') # path to checkpoint, None if none
chexpert_c = .9
temperature = 1
beta = 1
aux_weight = .5
fine_tune_lr = 1e-5 # learning rate for decoder
nhead = 8
d_model = 256
dim_feedforward = 4096
num_encoder_layers = 1
num_decoder_layers = 6
if model_name == 'TX':
job_name = "{}_bs{}_lr{}_nhead{}_dmodel{}_dimff{}_enclayers{}_declayers{}_clip{}".format(model_name, batch_size, decoder_lr, nhead,
d_model, dim_feedforward,
num_encoder_layers, num_decoder_layers, grad_clip)
elif 'TXGB' in model_name:
job_name = "{}_bs{}_lr{}_finetunelr{}_nhead{}_dmodel{}_dimff{}_enclayers{}_declayers{}_chexpert{}_temp{}_beta{}".format(model_name, batch_size, decoder_lr, fine_tune_lr,
nhead, d_model, dim_feedforward,
num_encoder_layers, num_decoder_layers, chexpert_c, temperature, beta)
tx_name = "{}_bs{}_lr{}_nhead{}_dmodel{}_dimff{}_enclayers{}_declayers{}".format('TX', batch_size,
decoder_lr, nhead,
d_model, dim_feedforward,
num_encoder_layers,
num_decoder_layers)
checkpoint_path = os.path.join(data_folder, 'saved_models', tx_name, 'BEST_checkpoint.pth.tar')
data_name = os.path.join(data_folder, 'saved_models', job_name)
if not os.path.exists(data_name):
os.makedirs(data_name)
set_logger(os.path.join(data_name, 'train.log'))
logging.info(job_name)
def main():
"""
Training and validation.
"""
global best_bleu4, best_f1, epochs_since_improvement, checkpoint, start_epoch, data_name, word_map
# Read word map
word_map = np.load(os.path.join(data_folder, 'word2ind.npy'), allow_pickle=True).item()
# Custom dataloaders
train_data = ReportDataset(data_folder, 'train')
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=batch_size, shuffle=True, num_workers=workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
ReportDataset(data_folder, 'val'), batch_size=batch_size, shuffle=False, num_workers=workers, pin_memory=True)
# Initialize / load checkpoint
if not checkpoint:
datasetPath = os.path.join(data_folder, 'cxr_w2v.npy')
emb_weights = np.load(datasetPath)
if model_name == 'TX':
decoder = TransformerModel(embed_weight=emb_weights,
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
seq_len=train_data.pad_len)
elif model_name == 'TXGB':
checkpoint = torch.load(checkpoint_path)
transformer = checkpoint['decoder']
checkpoint = torch.load(chexpert_path)
chexpert = checkpoint['model']
print('Successfully loaded both models')
decoder = TransformerGumbelModel(embed_weight=emb_weights,
transformer=transformer,
chexpert=chexpert,
temperature=temperature,
beta=beta)
if 'GB' in model_name:
decoder_optimizer = torch.optim.Adam(params=decoder.parameters(),
lr=fine_tune_lr)
else:
decoder_optimizer = torch.optim.Adam(params=decoder.parameters(),
lr=decoder_lr)
scheduler = torch.optim.lr_scheduler.StepLR(decoder_optimizer, step_size=16, gamma=0.5)
else:
print('wrong path')
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_bleu4 = checkpoint['bleu-4']
decoder = checkpoint['decoder']
decoder_optimizer = checkpoint['decoder_optimizer']
# Move to GPU, if available
decoder = decoder.to(device)
# Loss function
criterion = nn.CrossEntropyLoss().to(device)
# Epochs
for epoch in range(start_epoch, epochs):
# Decay learning rate if there is no improvement for 8(5) consecutive epochs, and terminate training after 20(10)
if epochs_since_improvement == 100:
break
# One epoch's training
if model_name == 'TXGB':
fine_tune(train_loader=train_loader,
decoder=decoder,
criterion=criterion,
decoder_optimizer=decoder_optimizer,
epoch=epoch)
else:
train(train_loader=train_loader,
decoder=decoder,
criterion=criterion,
decoder_optimizer=decoder_optimizer,
epoch=epoch)
# One epoch's validation
if 'GB' in model_name:
recent_bleu4, recent_f1 = validate(val_loader=val_loader,
decoder=decoder,
criterion=criterion)
else:
recent_bleu4 = validate(val_loader=val_loader,
decoder=decoder,
criterion=criterion)
print(job_name)
# Check if there was an improvement
logging.info('Epoch: ' + str(epoch))
if 'GB' in model_name:
is_best = recent_f1 > best_f1
best_f1 = max(recent_f1, best_f1)
logging.info('Recent F1: ' + str(recent_f1))
logging.info('Best F1: ' + str(best_f1))
else:
is_best = recent_bleu4 > best_bleu4
best_bleu4 = max(recent_bleu4, best_bleu4)
logging.info('Recent BLEU4: '+str(recent_bleu4))
logging.info('Best BLEU4: ' + str(best_bleu4))
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
scheduler.step()
# Save checkpoint
save_checkpoint(data_name, epoch, epochs_since_improvement, decoder, decoder_optimizer, recent_bleu4, is_best)
def fine_tune(train_loader, decoder, criterion, decoder_optimizer, epoch):
"""
Performs one epoch's training.
:param train_loader: DataLoader for training data
:param decoder: decoder model
:param criterion: loss layer
:param decoder_optimizer: optimizer to update decoder's weights
:param epoch: epoch number
"""
decoder.train() # train mode
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss (per word decoded)
top5accs = AverageMeter() # top5 accuracy
metrics = Metrics()
start = time.time()
# Batches
for i, (imgs, caps, caplens, chexpert_labels) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to GPU, if available
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
chexpert_labels = chexpert_labels.to(device)
# Forward prop.
scores, caps_sorted, decode_lengths, chexpert_scores, sort_ind = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True).data
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True).data
# Calculate loss
loss = criterion(scores, targets)
loss = (1-chexpert_c) * loss + chexpert_c * criterion(chexpert_scores.view(-1, 3), chexpert_labels.view(-1))
metrics.update(chexpert_scores.to('cpu'), chexpert_labels.to('cpu'))
# Back prop.
decoder_optimizer.zero_grad()
loss.backward()
# Update weights
decoder_optimizer.step()
# Keep track of metrics
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses,
top5=top5accs))
print('Micro Positive F1 {f1:.4f}'.format(f1=metrics.calculate_metrics()['Micro Positive F1']))
def train(train_loader, decoder, criterion, decoder_optimizer, epoch):
"""
Performs one epoch's training.
:param train_loader: DataLoader for training data
:param decoder: decoder model
:param criterion: loss layer
:param decoder_optimizer: optimizer to update decoder's weights
:param epoch: epoch number
"""
decoder.train() # train mode (dropout and batchnorm is used)
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss (per word decoded)
top5accs = AverageMeter() # top5 accuracy
metrics = Metrics()
metrics_roc = MetricsROC()
start = time.time()
# Batches
for i, (imgs, caps, caplens, chexpert_labels) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to GPU, if available
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
chexpert_labels = chexpert_labels.to(device)
# Forward prop.
if 'GB' in model_name:
scores, chexpert_scores = decoder(imgs, caps, caplens)
elif 'Multi' in model_name:
scores, chexpert_scores = decoder(imgs, caps, caplens)
else:
scores = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps[:, 1:]
decode_lengths = (caplens.squeeze(1) - 1).tolist()
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True, enforce_sorted=False).data
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True, enforce_sorted=False).data
# Calculate loss
loss = criterion(scores, targets)
if 'GB' in model_name:
loss += chexpert_c * criterion(chexpert_scores.view(-1, 3), chexpert_labels.view(-1))
metrics.update(chexpert_scores.to('cpu'), chexpert_labels.to('cpu'))
# Back prop.
decoder_optimizer.zero_grad()
loss.backward()
# Clip gradients
if grad_clip is not None:
clip_gradient(decoder_optimizer, grad_clip)
# Update weights
decoder_optimizer.step()
# Keep track of metrics
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses,
top5=top5accs))
if 'Multi' in model_name:
print('Micro AUCROC {roc:.4f}'.format(roc=metrics.calculate_metrics()['Micro AUCROC']))
if 'GB' in model_name:
print('Micro Positive F1 {f1:.4f}'.format(f1=metrics.calculate_metrics()['Micro Positive F1']))
# if i > 15:
# break
logging.info('End of Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses,
top5=top5accs))
if 'GB' in model_name :
logging.info('Micro Positive F1 {f1:.4f}'.format(f1=metrics.calculate_metrics()['Micro Positive F1']))
if 'Multi' in model_name:
logging.info('Micro AUCROC {roc:.4f}'.format(roc=metrics.calculate_metrics()['Micro AUCROC']))
def validate(val_loader, decoder, criterion):
"""
Performs one epoch's validation.
:param val_loader: DataLoader for validation data.
:param decoder: decoder model
:param criterion: loss layer
:return: BLEU-4 score
"""
decoder.eval() # eval mode (no dropout or batchnorm)
batch_time = AverageMeter()
losses = AverageMeter()
top5accs = AverageMeter()
metrics = Metrics()
metrics_roc = MetricsROC()
start = time.time()
references = list() # references (true captions) for calculating BLEU-4 score
hypotheses = list() # hypotheses (predictions)
# explicitly disable gradient calculation to avoid CUDA memory error
# solves the issue #57
with torch.no_grad():
# Batches
for i, (imgs, caps, caplens, chexpert_labels) in enumerate(val_loader):
# print(caplens)
# Move to GPU, if available
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
chexpert_labels = chexpert_labels.to(device)
# Forward prop.
if 'GB' in model_name:
scores, chexpert_scores = decoder(imgs, caps, caplens)
elif 'Multi' in model_name:
scores, chexpert_scores = decoder(imgs, caps, caplens)
else:
scores = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps[:, 1:]
decode_lengths = (caplens.squeeze(1) - 1).tolist()
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores_copy = scores.clone()
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True, enforce_sorted=False).data
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True, enforce_sorted=False).data
# Calculate loss
loss = criterion(scores, targets)
if 'GB' in model_name:
loss += chexpert_c * criterion(chexpert_scores.view(-1, 3), chexpert_labels.view(-1))
# Keep track of metrics
losses.update(loss.item(), sum(decode_lengths))
top5 = accuracy(scores, targets, 5)
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Store references (true captions), and hypothesis (prediction) for each image
# If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
# references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
# References
allcaps = caps
for j in range(allcaps.shape[0]):
img_caps = allcaps[j].tolist()
img_captions = [
[w for w in img_caps if w not in {word_map['**START**'], word_map['**PAD**']}]] # remove <start> and pads
references.append(img_captions)
# Hypotheses
_, preds = torch.max(scores_copy, dim=2)
preds_list = preds.tolist()
temp_preds = list()
for j, p in enumerate(preds_list):
temp_preds.append(preds_list[j][:decode_lengths[j]]) # remove pads
preds_list = temp_preds
hypotheses.extend(preds_list)
assert len(references) == len(hypotheses)
if 'GB' in model_name:
chexpert_scores = decoder.chexpert(preds, caplens)
metrics.update(chexpert_scores.to('cpu'), chexpert_labels.to('cpu'))
if i % print_freq == 0:
print('Validation: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(i, len(val_loader), batch_time=batch_time,
loss=losses, top5=top5accs))
if 'GB' in model_name:
print('Micro Positive F1 {f1:.4f}'.format(f1=metrics.calculate_metrics()['Micro Positive F1']))
# Calculate BLEU-4 scores
bleu4 = corpus_bleu(references, hypotheses)
print(
'\n * LOSS - {loss.avg:.3f}, TOP-5 ACCURACY - {top5.avg:.3f}, BLEU-4 - {bleu}\n'.format(
loss=losses,
top5=top5accs,
bleu=bleu4))
if 'GB' in model_name:
logging.info('Micro Positive F1 {f1:.4f}'.format(f1=metrics.calculate_metrics()['Micro Positive F1']))
if 'GB' in model_name:
return bleu4, metrics.calculate_metrics()['Micro Positive F1']
return bleu4
if __name__ == '__main__':
main()