forked from wywu/ReenactGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_Decoder.py
60 lines (48 loc) · 2.22 KB
/
train_Decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import time
from options.decoder_options import DecoderOptions
from data.data_loader import CreateDataLoader
from models.face2boundary2face_model import Face2Boundary2FaceModel
from util.visualizer import Visualizer
opt = DecoderOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
print("len(dataset):{}".format(len(dataset)))
model = Face2Boundary2FaceModel(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
# print ("!i_out:.{}".format(i))
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
# model.visualisation_check()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results([model.get_current_visuals()], epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
ave_time_cost = time.time() - epoch_start_time
left_time_cost = (opt.niter + opt.niter_decay - epoch) * ave_time_cost
print('Speed: %fs / epoch. %d:%d (H:M) to go.' % (ave_time_cost, int(left_time_cost/3600), int((left_time_cost-3600*int(left_time_cost/3600))/60)))
model.update_learning_rate()