-
Notifications
You must be signed in to change notification settings - Fork 0
/
genetic_algorithm.py
148 lines (135 loc) · 6.18 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
from bin import Bin
from heuristics import BestFit, FirstFit, NextFit, WorstFit
import random
class GeneticAlgorithm:
def __init__(self, capacity, items,POPULATION_SIZE = 50,MAX_GENERATIONS = 250,MAX_NO_CHANGE = 50 ,TOURNAMENT_SIZE = 20 ,MUTATION_RATE = 0.3 ,CROSSOVER_RATE = 0.6, population=None):
"""
Cree une instance qui peut executer l'algorithme genetique.
:param capacity: la capacité du bin.
:param items: l'ensemble des items qui doivent être emballés dans le bin.
"""
self.POPULATION_SIZE = POPULATION_SIZE
self.MAX_GENERATIONS = MAX_GENERATIONS
self.MAX_NO_CHANGE = MAX_NO_CHANGE
self.TOURNAMENT_SIZE = TOURNAMENT_SIZE
self.MUTATION_RATE = MUTATION_RATE
self.CROSSOVER_RATE = CROSSOVER_RATE
self.items = items
self.best_solution = None
if population == None:
self.population = [Chromosome(capacity) for _ in range(self.POPULATION_SIZE)]
self.update_individuals(self.population)
else:
self.population = population
self.update_individuals(self.population)
def run(self):
"""
Runs the genetic algorithm and returns the results at the end of the process.
:return: (num_iterations, num_no_changes)
"""
current_iteration = 0
num_no_change = 0
while num_no_change < self.MAX_NO_CHANGE and current_iteration < self.MAX_GENERATIONS:
new_generation = []
while len(new_generation) < self.POPULATION_SIZE:
# Select parents
parent1 = self.select_parent()
parent2 = self.select_parent()
# Apply genetic operators
child1, child2 = self.crossover(parent1, parent2)
child1, child2 = self.mutate(child1), self.mutate(child2)
# Update the fitness values of the offspring to determine whether they should be added
self.update_individuals([child1, child2])
sorted_list = sorted([parent1, parent2, child1, child2], key=lambda x: x.fitness, reverse=True)
# Add to new generation the two best chromosomes of the combined parents and offspring
new_generation.append(sorted_list[0])
new_generation.append(sorted_list[1])
self.population = new_generation
prev_best = self.best_solution
# Evaluate fitness values
self.best_solution = self.update_individuals(self.population)
# Check if any improvement has happened.
if not prev_best or prev_best.fitness == self.best_solution.fitness:
num_no_change += 1
else:
num_no_change = 0
current_iteration += 1
return current_iteration, num_no_change
def mutate(self, chromosome):
"""
Attempts to mutate the chromosome by replacing a random heuristic in the chromosome by a generated pattern.
:param chromosome: The chromosome to mutate.
:return: The mutated chromosome.
"""
pattern = list(chromosome.pattern)
if random.random() < self.MUTATION_RATE:
mutation_point = random.randrange(len(pattern))
pattern[mutation_point] = Chromosome.generate_pattern()
return Chromosome(chromosome.bin_capacity, "".join(pattern))
def crossover(self, parent1, parent2):
"""
Attempt to perform crossover between two chromosomes.
:param parent1: The first parent.
:param parent2: The second parent.
:return: The two individuals after crossover has been performed.
"""
pattern1, pattern2 = parent1.pattern, parent2.pattern
if random.random() < self.CROSSOVER_RATE:
point1, point2 = random.randrange(len(pattern1)), random.randrange(len(pattern2))
substr1, substr2 = pattern1[point1:], pattern2[point2:]
pattern1, pattern2 = "".join((pattern1[:point1], substr2)), "".join((pattern2[:point2], substr1))
return Chromosome(parent1.bin_capacity, pattern1), Chromosome(parent2.bin_capacity, pattern2)
def update_individuals(self, individuals):
"""
Update the fitness values of all the chromosomes in the population.
"""
for individual in individuals:
solution = individual.generate_solution(self.items)
individual.num_bins = len(solution)
individual.fitness = sum(b.fitness() for b in solution) / len(solution)
return max(self.population, key=lambda x: x.fitness)
def select_parent(self):
"""
Selects a parent from the current population by applying tournament selection.
:return: The selected parent.
"""
candidate = random.choice(self.population)
for _ in range(self.TOURNAMENT_SIZE - 1):
opponent = random.choice(self.population)
if opponent.fitness > candidate.fitness:
candidate = opponent
return candidate
class Chromosome:
MAX_COMBINATION_LENGTH = 10
heuristic_map = {
"f": FirstFit,
"n": NextFit,
"w": WorstFit,
"b": BestFit,
}
def __init__(self, capacity, pattern=None):
self.bin_capacity = capacity
self.fitness = 0
self.num_bins = 0
self.pattern = pattern or self.generate_pattern()
@staticmethod
def generate_pattern():
"""
Generates a random pattern.
:return: The generated pattern string.
"""
return "".join(
[random.choice(list(Chromosome.heuristic_map.keys())) for _ in range(random.randrange(Chromosome.MAX_COMBINATION_LENGTH) or 1)])
def generate_solution(self, items):
"""
Generates a candidate solution based on the pattern given.
:param items: The items that need to be used when generating a solution.
:return: A list of bins to serve as a solution.
"""
solution = [Bin(self.bin_capacity)]
pattern_length = len(self.pattern)
for idx, item in enumerate(items):
h = self.pattern[idx % pattern_length]
solution = self.heuristic_map[h].apply(item, solution)
return solution