diff --git a/blog/2023-09-08-dcm-using-kcl/index.md b/blog/2023-09-08-dcm-using-kcl/index.md
index 5170e2e6..d3598c67 100644
--- a/blog/2023-09-08-dcm-using-kcl/index.md
+++ b/blog/2023-09-08-dcm-using-kcl/index.md
@@ -69,9 +69,9 @@ In summary, the KRM KCL specification presents a new paradigm for dynamic config
In the KRM KCL specification, we categorize the behaviors of the KCL configuration model into three main types:
-+ **Mutation**: Takes input KCL parameters params and outputs a KRM list.
-+ **Validation**: Takes input KCL parameters params and a KRM list, and outputs a modified KRM list.
-+ **Abstraction**: Takes input KCL parameters params and a KRM list, and outputs a KRM list and resource validation results.
++ **Mutation**: Takes input KCL parameters params and a KRM list, and outputs a modified KRM list.
++ **Validation**: Takes input KCL parameters params and a KRM list, and outputs a KRM list and resource validation results.
++ **Abstraction**: Takes input KCL parameters params and outputs a KRM list.
Using KCL, we can programmatically achieve the following capabilities:
diff --git a/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md b/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md
new file mode 100644
index 00000000..76315e18
--- /dev/null
+++ b/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md
@@ -0,0 +1,189 @@
+---
+slug: 2023-10-23-cloud-native-supply-chain-krm-kcl-spec
+title: A New Paradigm for Cloud Native Configuration and Policy Management - KRM KCL Specification
+authors:
+ name: KCL Team
+ title: KCL Team
+tags: [KCL, Meeting]
+---
+
+> This blog is a review of the content of the KCL speech at the 2023 CNCF KCD Hangzhou Conference. Activity link: [https://community.cncf.io/events/details/cncf-kcd-hangzhou-presents-kcd-hangzhou-2023/](https://community.cncf.io/events/details/cncf-kcd-hangzhou-presents-kcd-hangzhou-2023/)
+
+## Background
+
+> With the development of cloud-native technology, we are increasingly shifting towards cloud infrastructure. Infrastructure as code (IaC) tools like Kubernetes and Terraform have become increasingly popular for managing and deploying cloud API-based applications. However, this popularity has also brought about complexity and cognitive burden issues that have reached their peak in recent years.
+
+![cognitive-loading](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading-en.jpg)
+
+For Kubernetes, as the most widely used container orchestration system, Gartner predicts that by 2022, over 75% of organizations globally will be running containerized applications in production. The container management market is estimated to be around 300 million dollars, projected to surpass 1 billion dollars by 2025. Additionally, Kubernetes is steadily moving out of its troubled phase towards maturity and wider adoption[1].
+
+For Terraform, as the most widely used IaC tool, as of the time of writing this article, the Terraform VS Code plugin has an installation count of around 3.2 million, roughly one-third of the installation count of the Go VS Code plugin (around 10 million), and even surpasses the installation count of many general-purpose programming languages. For example, the Rust VS Code plugin has an installation count of around 2.3 million. Furthermore, HCL is the fastest-growing programming language on GitHub in 2022, surpassing all other general-purpose and domain-specific programming languages, forming a wide developer ecosystem[2].
+
+From this, it can be seen that Kubernetes and Terraform are becoming indispensable infrastructure projects in the cloud-native field and will continue to grow in the coming years. Although the nature of these two projects is not entirely the same, they are converging and becoming increasingly complex.
+
+The increasing complexity of the cloud API represented by Kubernetes and Terraform can be attributed to several factors[3][4][5]:
+
++ **Increasing capabilities**: Kubernetes and cloud APIs are constantly evolving to meet the growing demands of applications and cloud computing. To meet user demands, they continuously introduce new features and capabilities such as auto-scaling, service discovery, load balancing, and permission management. The introduction of these new features increases the complexity of the system. Although we already have various automation methods, over time, the number of different resource types, potential settings for these resource types, and the complexity of relationships between these resource types grow exponentially.
++ **Complex configuration management requirements**: As the scale of applications grows, configuring and managing Kubernetes and cloud APIs becomes increasingly complex. For example, managing a large number of container instances and resources, configuring complex networking and storage, implementing high availability and load balancing, and repeatedly performing configurations for different environments and topologies. These complex configuration and management requirements increase the complexity of Kubernetes and cloud APIs, often resulting in the emergence of "YAML engineers" or "markup language human-editing engineers" in the Kubernetes field.
+
+For cloud APIs, we can leverage IaC tools like Terraform to obtain a large number of pre-written module configurations and providers. However, for Kubernetes, there is still a lack of lightweight client-side configuration composition and abstraction solutions. Existing solutions or specifications struggle to strike a balance between abstraction capabilities and scalability. In extreme scenarios, developers often write a lot of glue code and scripts to handle configurations, which restricts stability and efficiency.
+
+Therefore, we propose the KCL project and the KRM KCL specification, hoping to fill the gap in configuration languages and tools in the lightweight client-side cloud-native dynamic configuration field with more modern declarative configuration languages and tools. We aim to address the following issues:
+
++ **Dimension explosion**: Most static configurations, such as Kubernetes YAML configurations in the cloud-native field, need to be configured separately for each environment. In the worst case, it may introduce difficult-to-debug errors involving cross-environment dependencies, leading to poor stability and scalability.
++ **Configuration drift**: There is often no standardized way to manage the dynamic configurations of applications and infrastructure for different environments. Adopting non-standard methods such as scripting and piecing together glue code can result in exponential complexity and configuration drift.
++ **Cognitive burden**: Kubernetes and other platform technologies that serve as building platforms excel in unifying infrastructure details at the underlying level. However, they lack higher-level software delivery abstractions, which result in a higher cognitive burden for ordinary developers and affect the software delivery experience of higher-level application developers.
+
+## Concepts
+
+![kcl-intro](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro-en.jpg)
+
+KCL is a specialized configuration policy language for the cloud-native domain. It was open-sourced in June 2022 and became a CNCF Sandbox project hosted by the CNCF foundation in September 2023. KCL aims to improve the user experience of writing cloud-native configuration policies and programmability at the Kubernetes API layer. The KCL project is currently included in the CNCF foundation's Automation & Configuration Landscape. The "C" in KCL stands for Configuration, the "L" stands for Language, and the "K" is derived from the first letter of Kubernetes[6].
+
+Unlike general-purpose programming languages, KCL is a domain-specific programming language that solves nearly infinite variations of business scenarios and complexities with a convergent set of syntax and semantics. For example, within the Kubernetes domain alone, there are thousands of resources and a fragmented Operator ecosystem in the community. KCL encapsulates the thought process and approach of writing complex configurations and policies into its language features, avoiding the security risks and side effects associated with using general-purpose languages for configuration.
+
+As a configuration language, KCL provides the most important functionality for application and platform developers/SREs, which is dynamic configuration management. Through code abstraction, we can build an application-centric model that shields developers from the complexities of infrastructure and platform concepts and provides them with an interface that is centered around the application and easy to understand. Additionally, KCL allows platform engineers to quickly extend and define their own models, and it provides rich manageability capabilities, including out-of-the-box KCL code libraries, semantic versioning, OCI Registry, language toolchains, and automation support.
+
+Furthermore, KCL operates within a completely open cloud-native ecosystem and is not tightly coupled to any orchestration/engineering tools or Kubernetes controllers. In cloud-native supply chain scenarios and large-scale operational scenarios, KCL can provide API abstraction, composition, and validation capabilities for both the client and runtime. Users can choose suitable engines such as Kubectl[7], KusionStack[8], KubeVela[9], or Helmfile[10] to combine with KCL and apply configurations to the cluster.
+
+![kcl-concept](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept-en.jpg)
+
+In addition, KCL itself is a modern, high-level domain-specific programming language, which is a compiled static and strongly-typed language. KCL provides developers with the core capabilities of **configuration (config)**, **model abstraction (schema)**, **logic (lambda)**, and **policies (rules)** through a record and function-oriented language design.
+
+KCL aims to provide programmability independent of the runtime, without providing system functionalities such as threads and IO locally. It strives to offer programming support that is stable, secure, low-noise, low side-effect, high-performance, easy to automate, and easy to manage in order to solve domain-specific problems.
+
+![krm-kcl](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl-en.jpg)
+
+The KRM KCL specification is a configuration specification based on the Kubernetes Resource Model (KRM). KRM is a generic configuration model used to describe and manage various cloud-native resources such as containers, pods, and services. KRM provides a unified way to define and manage these resources, enabling them to be portable and reusable across different environments[11].
+
+As one of the official Kubernetes specifications, the core concept of KRM is KRM functions. The input of KRM functions is a set of Kubernetes resources and the configuration of the KRM function, and the output is a set of Kubernetes resources along with the results of the function execution, such as error messages and debug information. KRM KCL is the implementation of KRM functions using KCL code and extends it with support for various code sources such as OCI Registry, Git, and HTTPS.
+
+In the KRM KCL specification, the behaviors of the KCL configuration model are mainly divided into three categories:
+
++ **Mutation**: Takes input KCL parameters `params` and a list of KRM resources and outputs a modified list of KRM resources.
++ **Validation**: Takes input KCL parameters `params` and a list of KRM resources and outputs the list of KRM resources and resource validation results.
++ **Abstraction**: Takes input KCL parameters `params` and outputs a list of KRM resources.
+
+Using KCL, we can achieve the following capabilities programmatically:
+
++ Modify resources using KCL, such as adding/modifying label tags or annotation comments based on certain conditions or injecting Sidecar container configurations in all Kubernetes Resource Model (KRM) resources containing PodTemplate.
++ Validate all KRM resources using KCL schema, such as constraining containers to only be launched in a root manner.
++ Generate KRM resources or abstract/combine different Kubernetes APIs using the abstraction model, for example, instantiating a web application configuration using the "web-service" model.
+
+With the help of KCL IDE and KCL package management tools, we can write models and upload them to the OCI Registry for model reuse. We can programmatically extend the support for the KRM KCL specification, and these models can be used separately in the client or runtime based on specific scenario requirements.
+
+## Developer Experience
+
+Regarding the mentioned domain-specific problems and the related concepts of KCL, we primarily provide three aspects of support to users: language, toolchain, and cloud-native integrations.
+
+![workspace](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/workspace.png)
+
+Although KCL is a domain-specific language, it is comprehensive in its capabilities. KCL provides toolchain functionalities that are equivalent to general-purpose languages, such as formatting, testing, documentation, package management, etc., to assist in writing, understanding, and validating configurations or policies. IDE plugins like VS Code and Playground reduce the cost of configuration writing and sharing. Automation of configuration management and execution is achieved through multilingual SDKs in Rust, Go, and Python.
+
+![ide](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/ide.png)
+
+For IDE plugins, KCL currently mainly supports VS Code, IntelliJ, and NeoVim. These plugins, based on the same KCL Language Server, offer features like autocompletion, navigation, hover, code refactoring, and formatting[12].
+
+![integration](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration-en.jpg)
+
+As a CNCF project, KCL is integrated with many other CNCF ecosystem projects. For example, KCL provides plugins for existing CNCF ecosystem configuration management tools like Kubectl, Helm, Kustomize, kpt, helmfile, etc. At runtime, KCL offers the KCL Kubernetes Operator to meet various configuration management needs. Additionally, we provide the following integration support:
+
++ **Multilingual Support**: We offer multilingual SDKs to help users work with KCL in different programming languages and integrate it into their own applications.
++ **Package Management Support**: We provide KCL package management tools that allow distribution and reuse of configurations and policy code through standard OCI supply chain methods like Harbor, Docker Hub, GitHub Packages, etc.
++ **Schema and Data Migration Support**: We support one-click migration of schema and data from other ecosystems to KCL Schema, including Go/Rust struct definitions, JsonSchema, Protobuf, OpenAPI, Terraform Provider Schema, JSON, YAML, and more.
+
+![artifact-hub](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub.png)
+
+![artifact-hub-k8s](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub-k8s.png)
+
+Furthermore, KCL supports integration with ArtifactHub. You can publish your KCL package to ArtifactHub by submitting a PR to the `kcl-lang/artifacthub` repository. This allows you to see the effects of the uploaded KCL package on the ArtifactHub page, such as the k8s package[13].
+
+In addition to that, KCL provides many out-of-the-box cloud-native models, primarily covering **Kubernetes** and **Terraform** models. Developers can easily add corresponding configuration model dependencies or view the KCL source code with just one line of KCL command.
+
+![performance](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/performance.png)
+
+In addition to the external work related to language, toolchain, and cloud-native integration, we have also made significant efforts to ensure stability and performance within KCL. In scenarios with large code bases or high computational requirements, KCL outperforms languages like CUE, Jsonnet, HCL, etc. Furthermore, KCL's progressive static typing system, immutability, schema, and validation rules ensure further stability of configurations.
+
+## Case Studies
+
+### Kubernetes
+
+KCL currently focuses on the cloud-native domain, particularly in Kubernetes scenarios.
+
+![k8s-mutation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation-en.jpg)
+
+As a small programming language within the cloud-native domain, KCL can be directly used to address simple tasks in the environment. For example, the `append-env` model can be used to inject environment variables into Kubernetes resources without the need for scripting. These models are shareable, reusable, and have been tested for code reliability, stability, and scalability.
+
+![k8s-validation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation-en.jpg)
+
+In addition to in-place editing of Kubernetes configurations, KCL offers a variety of out-of-the-box models for Kubernetes configuration validation. These models address security and compliance issues in the cloud-native supply chain. For example, the `disallow-svc-lb` model can be used to validate whether the `Service` resource incorrectly sets the `LoadBalancer` type, and the `https-only` model can verify if the `Ingress` resource contains explicit annotations set to use https.
+
+Compared to other policy tools or engines, the advantage of using KCL is that a validation model can be used both on the client side and at runtime. Schema and constraint conditions can be defined simultaneously in the programming language interface, without the need for additional OpenAPI Schema or JSON Schema integration.
+
+![kcl-operator](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator-en.jpg)
+
+In addition to abstracting, editing, and verifying configurations on the client side, KCL also provides runtime support. KCL Operator provides Kubernetes cluster integration, allowing Access Webhook to generate, mutate, or validate resources based on KCL configuration when applying Kubernetes resources to the cluster. Webhook will capture creation, application, and editing operations, and `KCLRun` will execute resources on the configuration associated with each operation[14].
+
+Using the KCL Operator, resource configuration management and security verification can be automated in a lightweight manner within the Kubernetes cluster through KCL code in a few steps, without the need to repeatedly develop Webhook Server to dynamically modify and verify configurations at runtime.
+
+### Terraform
+
+Another scenario that KCL focuses on is the ecosystem model of Terraform.
+
+![tf-validation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation-en.jpg)
+
+In the cloud-native supply chain scenario, apart from the user's business code, it is often necessary to verify the security of the Infrastructure as Code (IaC) code. Therefore, KCL also provides validation models related to Terraform. For example, the example shown in the image only requires a few lines of KCL code to enforce the requirement of not deleting resources during automatic scaling operations in an AWS resource group[15].
+
+Compared to other policy engines or tools, KCL supports easy conversion from Terraform Provider Schema to KCL Schema, making policy writing more accessible.
+
+### IaC & GitOps
+
+![gitops](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops-en.jpg)
+
+Whether it is the Kubernetes model or the Terraform model, and whether it is using the standalone KCL or KRM KCL configuration format, KCL supports integration with various CI/CD and GitOps tools. KCL allows developers to define the resources required for an application in a declarative manner. By combining KCL with GitOps tools, we can achieve better Infrastructure as Code (IaC) implementation, improve deployment efficiency, and simplify application configuration management[16].
+
+With GitOps, developers and operations teams can manage the deployment of applications by separately modifying application and configuration code. The GitOps toolchain can automatically change configurations based on the automation capabilities of KCL, enabling continuous deployment and ensuring consistency. If any issues arise, the GitOps toolchain allows for quick rollbacks.
+
+![app-delivery](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery-en.jpg)
+
+KCL can also be used in conjunction with various CI/CD and application configuration delivery engines within an enterprise, such as KusionStack, to achieve separation of concerns, application-centric programmable model interfaces, and GitOps workflows. This simplifies the deployment and operations of scalable applications in today's hybrid and multi-cloud environments, enhancing release and operations efficiency as well as developer experience.
+
+![k8s-abstraction](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction-en.jpg)
+
+Furthermore, with the Schema structure and automation API of KCL, we can integrate KCL into external systems and use CLI/API/UI forms to automate the addition, deletion, modification, and retrieval of KCL configurations. This not only enables GitOps and Infrastructure as Code (IaC) but also provides a user-friendly configuration management interface for developers. It supports changes to KCL code in the form of UI forms, improving the efficiency of configuration management and application delivery while avoiding configuration drift and other issues.
+
+## Summary
+
+This article mainly reviews the content of the KCL presentation at the CNCF KCD community conference. It discusses the challenges encountered in the cloud-native domain, especially in the Kubernetes and Terraform ecosystems, as well as the concepts, user experiences, and practices of the KRM KCL specification.
+
+Of course, the problems that KCL can solve and the scenarios it can be applied to are much broader than what is covered in this article. Due to the limitations of the article length, we will continue to share the best practices of adopters in the community. We also welcome everyone to join our community for further discussions and exchanges ❤️.
+
+## More Resources
+
+For more resources, please refer to:
+
++ [KCL Website](https://kcl-lang.io/)
++ [KCL Repo](https://github.com/kcl-lang/kcl)
++ [KusionStack Website](https://kusionstack.io/)
++ [KusionStack Repo](https://github.com/KusionStack/kusion)
+
+See the [community](https://github.com/kcl-lang/community) for ways to join us. 👏👏👏
+
+## Reference
+
++ [1] Forecast Analysis: Container Management (Software and Services), Worldwide: [https://www.gartner.com/en/documents/3985796](https://www.gartner.com/en/documents/3985796)
++ [2] The top programming languages: [https://octoverse.github.com/2022/top-programming-languages](https://octoverse.github.com/2022/top-programming-languages)
++ [3] Declarative Application Management in Kubernetes: [https://docs.google.com/document/d/1cLPGweVEYrVqQvBLJg6sxV-TrE5Rm2MNOBA_cxZP2WU/edit#](https://docs.google.com/document/d/1cLPGweVEYrVqQvBLJg6sxV-TrE5Rm2MNOBA_cxZP2WU/edit#)
++ [4] CNCF Platform Engineering Whitepaper: [https://tag-app-delivery.cncf.io/whitepapers/platforms/](https://tag-app-delivery.cncf.io/whitepapers/platforms/)
++ [5] Google SRE Workbook: Configuration Specifics: [https://sre.google/workbook/configuration-specifics/](https://sre.google/workbook/configuration-specifics/)
++ [6] KCL Website: [https://kcl-lang.io/](https://kcl-lang.io/)
++ [7] Kubectl: [https://kubernetes.io/docs/reference/kubectl/](https://kubernetes.io/docs/reference/kubectl/)
++ [8] KusionStack: [https://kusionstack.io](https://kusionstack.io)
++ [9] KubeVela: [https://kubevela.net](https://kubevela.net)
++ [10] Helmfile: [https://github.com/helmfile/helmfile](https://github.com/helmfile/helmfile)
++ [11] KRM KCL Specification: [https://github.com/kcl-lang/krm-kcl](https://github.com/kcl-lang/krm-kcl)
++ [12] KCL IDE Extension: [https://kcl-lang.io/docs/tools/Ide/](https://kcl-lang.io/docs/tools/Ide/)
++ [13] ArtifactHub KCL Integration: [https://artifacthub.io/](https://artifacthub.io/)
++ [14] KCL Operator: [https://github.com/kcl-lang/kcl-operator](https://github.com/kcl-lang/kcl-operator)
++ [15] Terraform KCL Policy: [https://kcl-lang.io/docs/user_docs/guides/working-with-terraform/validation](https://kcl-lang.io/docs/user_docs/guides/[]working-with-terraform/validation)
++ [16] GitOps using KCL: [https://kcl-lang.io/docs/user_docs/guides/gitops/gitops-quick-start](https://kcl-lang.io/docs/user_docs/guides/gitops/gitops-quick-start)
diff --git a/i18n/zh-CN/docusaurus-plugin-content-blog/2023-09-08-dcm-using-kcl/index.md b/i18n/zh-CN/docusaurus-plugin-content-blog/2023-09-08-dcm-using-kcl/index.md
index da6e32c2..82916de1 100644
--- a/i18n/zh-CN/docusaurus-plugin-content-blog/2023-09-08-dcm-using-kcl/index.md
+++ b/i18n/zh-CN/docusaurus-plugin-content-blog/2023-09-08-dcm-using-kcl/index.md
@@ -69,9 +69,9 @@ KRM KCL 规范的另一个重要特性是其对动态配置管理的支持。传
在 KRM KCL 规范,我们将 KCL 配置模型的行为主要分成三类
-+ **Mutation**: 输入 KCL 参数 `params` 并输出 KRM 列表
-+ **Validation**: 输入 KCL 参数 `params` 和 KRM 列表并输出修改后 KRM 列表。
-+ **Abstraction**: 输入 KCL 参数 `params` 和 KRM 列表并输出 KRM 列表和资源验证结果。
++ **Mutation**: 输入 KCL 参数 `params` 和 KRM 列表并输出修改后 KRM 列表。
++ **Validation**: 输入 KCL 参数 `params` 和 KRM 列表并输出 KRM 列表和资源验证结果。
++ **Abstraction**: 输入 KCL 参数 `params` 并输出 KRM 列表
我们可以使用 KCL 以可编程的方式实现如下能力:
diff --git a/i18n/zh-CN/docusaurus-plugin-content-blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md b/i18n/zh-CN/docusaurus-plugin-content-blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md
new file mode 100644
index 00000000..67c0203d
--- /dev/null
+++ b/i18n/zh-CN/docusaurus-plugin-content-blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/index.md
@@ -0,0 +1,195 @@
+---
+slug: 2023-10-23-cloud-native-supply-chain-krm-kcl-spec
+title: KCD 社区会议回顾 | 基于云原生供应链的配置策略管理新范式 - KRM KCL 规范
+authors:
+ name: KCL Team
+ title: KCL Team
+tags: [KCL, Meeting]
+---
+
+> 本篇文章是 2023 年 CNCF KCD 杭州会议 KCL 演讲部分内容回顾,活动链接: [https://community.cncf.io/events/details/cncf-kcd-hangzhou-presents-kcd-hangzhou-2023/](https://community.cncf.io/events/details/cncf-kcd-hangzhou-presents-kcd-hangzhou-2023/)
+
+## 背景
+
+> 随着云原生技术的发展,我们更多地转向云基础设施,Kubernetes 和 Terraform 等基础设施即代码 (IaC) 工具已成为越来越流行的管理和部署基于云 API 的应用程序的工具。但是随之而来衍生出的复杂性问题和认知负担问题在近几年达到了高峰。
+
+![cognitive-loading](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading.png)
+
+对于 Kubernetes,作为使用最广泛的容器编排系统,Gartner 预测,到 2022 年,全球超过 75% 的组织将在生产中运行容器化应用程序。如今,容器管理市场估计约为 3 亿美元,预计到 2025 年将突破 10 亿美元,并且 Kubernetes 正稳步走出麻烦的低谷,走向成熟和更广泛的采用[1]。
+
+对于 Terraform,作为使用最广泛的 IaC 工具,截止本文撰写时,Terraform VS Code 插件安装量有 3.2M 左右,相当于 Go VS Code 插件安装量的三分之一 (10M 左右),甚至超过很多通用编程语言的安装量,比如 Rust VS Code 插件在 2.3M 左右, 并且 HCL 是 GitHub 2022 年度增长最快的编程语言,超过了其他所有通用编程语言和领域编程语言,形成了广泛的研发者生态[2]。
+
+由此可以看出,Kubernetes 和 Terraform 正在成为云原生领域中不可或缺的基础设施项目并且在未来几年将会持续增长,虽然它们两者的项目性质并不完全相同,但是殊途同归,它们正在变得越来越复杂。
+
+![issues](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/issues.png)
+
+Kubernetes 和 Terraform 背后所代表的云 API 越来越复杂的原因主要有以下几点[3][4][5]:
+
++ **不断增加的功能和能力**:Kubernetes 和云 API 都是为了应对不断增长的应用需求和云计算的发展而不断演进。为了满足用户的需求,它们不断引入新的功能和能力,如自动扩展、服务发现、负载均衡、权限管理等。这些新功能的引入增加了系统的复杂性。虽然我们已经有了各式各样的自动化手段,随着时间的推移,因为不同资源类型的数量、这些资源类型的潜在设置数量以及这些资源类型之间的复杂关系呈指数级增长。
++ **复杂的配置和管理需求**:随着应用规模的增长,配置和管理 Kubernetes 和云 API 变得越来越复杂。例如,需要管理大量的容器实例和资源、配置复杂的网络和存储、实现高可用性和负载均衡,需要针对不同的环境和拓扑重复地进行配置等。这些复杂的配置和管理需求增加了 Kubernetes 和云 API 的复杂性,开玩笑的说甚至在 Kubernetes 领域常常伴随催生了一批 YAML 工程师或标记语言人肉编辑工程师。
+
+对于云 API, 我们借助 Terraform 等 IaC 工具可以获得大量的已经编写好的 Module 配置和 Provider 等,但是对于 Kubernetes 仍然缺乏客户端的轻量级的配置组合和抽象解决方案,现有的方案或者规范难以在抽象能力和扩展性获得平衡,甚至对于一些极端场景,开发者往往编写许多胶水代码和脚本对配置进行处理逻辑,稳定性和效率都受到一定桎梏。
+
+于是我们思考需要有一个统一规范描述来同时承载配置语言能力,并且可以尽可能无副作用地同时满足云原生供应链和规模化配置等场景下的稳定性、扩展性和效率等特性,减轻基础设施对开发人员的认知负担,提高配置管理效率。
+
+因此,我们提出了 KCL 项目以及 KRM KCL 规范期望通过更现代化的声明式配置语言和工具,在轻量级客户端云原生动态配置领域填补配置语言及工具的空白并解决如下问题:
+
++ **维度爆炸**: 大多数静态配置如云原生领域的 Kubernetes YAML 配置需要为每个环境单独进行配置;在最糟糕的情况下,它可能引入涉及环境交叉链接的难以调试的错误,稳定性和扩展性都较差。
++ **配置漂移**: 对于不同环境的静态管理应用程序和基础设施配置的方式,往往没有标准的方式去管理这些动态的不同环境的配置,采用非标准化的方法比如脚本和胶水代码的拼盘,会导致复杂度呈指数增长,并导致配置漂移。
++ **认知负担**: Kubernetes 等作为构建平台的平台技术手段在底层统一基础架构细节方面出色,但是缺乏更上层的应用软件交付抽象,对于普通开发者认知负担较高,影响了更上层应用开发者的软件交付体验。
+
+## 概念
+
+![kcl-intro](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro.png)
+
+KCL 是一款面向云原生领域的专用配置策略语言,2022 年 6 月 开源,2023 年 9 月成为 CNCF 基金会托管的 Sandbox 项目,致力于改进编写云原生配置策略和 Kubernetes API 层可编程性编写的用户体验。KCL 项目目前位于 CNCF 基金会全景图 Automation & Configuration Landscape 中,KCL 中的 C 是 Configuration 的缩写,L 是 Language 的缩写,K 取自 Kubernetes 的首字母 K [6]。
+
+与通用编程语言不同,KCL 作为一款领域特定的编程语言,是以收敛有限的语法、语义集合解决近乎无限变化的业务场景和复杂性 (比如仅 Kubernetes 领域中就有成千上万种资源以及社区中多到数不清且碎片化的 Operator 生态),将复杂配置和策略编写思路和方式沉淀到语言特性中,避免使用通用语言等配置带来安全隐患等副作用。
+
+作为一种配置语言,KCL 为应用程序和平台开发人员/SRE 提供的最重要的功能是动态配置管理。通过代码抽象,我们可以构建以应用为中心的模型屏蔽复杂的基础设施和平台概念,为开发人员提供一个以应用程序为中心且易于理解的界面。此外,KCL 还允许平台人员快速扩展和定义自己的模型,并且提供丰富的可管理能力包括开箱即用的 KCL 代码库、语义版本化管理、OCI Registry,语言工具链和自动化支持。
+
+此外,KCL 建立在一个完全开放的云原生世界当中,几乎不与任何编排/引擎工具或者 Kubernetes 控制器绑定,在云原生供应链场景和规模化运维场景中,可同时为客户端和运行时提供 API 抽象、组合和校验的能力,用户可以选择合适场景的引擎比如 Kubectl[7], KusionStack[8], KubeVela[9] 或 Helmfile[10] 等来和 KCL 结合将配置生效到集群。
+
+![kcl-concept](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept.png)
+
+此外,KCL 语言本身是一种现代化的高级领域编程语言,它是一种编译静态的强类型语言。KCL 为开发人员提供了通过记录和函数语言设计将**配置(config)**、**建模抽象(schema)**、**逻辑(lambda)**和**策略(rule)**作为核心能力。
+
+KCL 试图提供独立于运行时的可编程性,不在本地提供线程和 IO 等系统功能,并试图为解决领域问题并提供稳定、安全、低噪声、低副作用、高性能、易于自动化和易于管理的编程支持。
+
+![krm-kcl](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl.png)
+
+KRM KCL 规范是基于 Kubernetes Resource Model(KRM)的一种配置规范。KRM 是一个通用的配置模型,用于描述和管理各种云原生资源,如容器、Pod、服务等。KRM 提供了一种统一的方式来定义和管理这些资源,使得它们可以在不同的环境中进行移植和复用[11]。
+
+KRM 规范作为 Kubernetes 官方的规范之一,其核心概念是 KRM 函数,KRM 函数的输入是一系列 Kubernetes 资源以及 KRM 函数的配置,输出也是一系列 Kubernetes 资源加上函数运行的结果比如报错、调试信息等。而 KRM KCL 是将 KRM Function 使用 KCL 代码实现,并在其基础上扩展了多种代码源支持比如 OCI Registry, Git 和 Https 等。
+
+在 KRM KCL 规范中,我们将 KCL 配置模型的行为主要分成三类
+
++ **Mutation**: 输入 KCL 参数 `params` 和 KRM 列表并输出修改后 KRM 列表。
++ **Validation**: 输入 KCL 参数 `params` 和 KRM 列表并输出 KRM 列表和资源验证结果。
++ **Abstraction**: 输入 KCL 参数 `params` 并输出 KRM 列表。
+
+我们可以使用 KCL 以可编程的方式实现如下能力:
+
++ 使用 KCL 对资源进行修改,如根据某个条件添加/修改 label 标签或 annotation 注释或在包含 PodTemplate 的所有 Kubernetes Resource Model (KRM) 资源中注入 Sidecar 容器配置等。
++ 使用 KCL Schema 验证所有 KRM 资源,如约束只能以 Root 方式启动容器等。
++ 使用抽象模型生成 KRM 资源或者对不同的 Kubernetes API 进行抽象/组合并使用,比如使用 `web-service` 模型实例化一个 Web 应用配置。
+
+我们可以借助 KCL IDE 和 KCL 包管理工具编写模型并上传到 OCI Registry 以实现模型复用,对 KRM KCL 规范进行可编程扩展支持,并且这些模型可以根据场景需求分别用在客户端或者运行时。
+
+## 用户体验
+
+针对上述提到到领域中的问题以及 KCL 相关概念,我们主要为用户提供了三方面的支持:语言、工具链、云原生集成。
+
+![workspace](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/workspace.png)
+
+虽然 KCL 是一个领域语言,但是麻雀虽小,五脏俱全。KCL 提供了与通用语言能力基本等同的的工具链如格式化,测试、文档、包管理等工具帮助更好地编写、理解和检查编写的配置或策略;通过 VS Code 等 IDE 插件和 Playground 降低配置编写、分享的成本;通过 Rust, Go, 和 Python 多语言 SDK 自动化地管理和执行配置。
+
+![ide](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/ide.png)
+
+对于 IDE 插件,KCL 目前主要提供了 VS Code,IntelliJ 和 NeoVim 三种 IDE 插件基于同样的 KCL Language Server 实现了同样的补全、跳转、悬停、代码重构和格式化等能力[12]。
+
+![integration](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration.png)
+
+作为 CNCF 的项目,KCL 还与 CNCF 其他众多生态项目进行了集成,比如为现有的 CNCF 生态配置管理工具项目如 Kubectl, Helm、Kustomize、kpt、helmfile 等提供 KCL 插件,在运行时提供 KCL Kubernetes Operator,以满足不同场景的配置管理需求等。此外我们还提供如下集成支持:
+
++ **多语言支持**:我们提供了多语言 SDK,帮助用户以不同的语言操作 KCL,并将其集成到自己的应用程序中。
++ **包管理支持**:我们提供了 KCL 包管理工具可以将配置和策略代码通过 Harbor, Docker Hub, GitHub Packages 等标准的 OCI 供应链方式进行分发和复用。
++ **Schema 和数据迁移支持**:我们支持其他生态系统的 Schema 和数据一键迁移到 KCL Schema,如 Go/Rust 结构定义、JsonSchema、Protobuf、OpenAPI、Terraform Provider Schema、JSON 和 YAML 等。
+
+![artifact-hub](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub.png)
+
+![artifact-hub-k8s](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub-k8s.png)
+
+此外,KCL 还支持与 ArtifactHub 的集成,您可以通过向 `kcl-lang/artifacthub` 仓库提交 PR 的方式将您的 KCL 包发布到 ArtifactHub,然后可以在 ArtifactHub 页面看到上传的 KCL 包的效果比如 k8s 包[13]。
+
+![registry](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/registry.png)
+
+在此基础上,KCL 提供了许多开箱即用的云原生模型主要涵盖 Kubernetes 和 Terraform 模型,可以通过一行 KCL 命令添加相应的配置模型依赖或者查看 KCL 源代码。
+
+![performance](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/performance.png)
+
+除了与用户直接相关的语言、工具链和云原生集成的外表工作,我们还在 KCL 的稳定性、性能等内在方面做了许多工作。在代码规模较大或者计算量较高的场景情况下 KCL 比 CUE/Jsonnet/HCL 等语言性能更好,且由于 KCL 的渐进式静态类型系统、不可变性、Schema、校验规则等特性,能够进一步保障配置的稳定性。
+
+## 实践
+
+### Kubernetes
+
+KCL 目前聚焦在云原生领域特别是 Kubernetes 场景模型。
+
+![k8s-mutation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation.png)
+
+作为云原生领域内的一个小语言,KCL 可以直接被用于解决场景中简单的小问题,如通过 `append-env` 模型直接为 Kubernetes 资源注入环境变量等配置而不是编写脚本,并且这些模型是可以分享复用并且经过了代码测试,在工程性、稳定性和扩展性上均有保障。
+
+![k8s-validation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation.png)
+
+除了 Kubernetes 配置原地编辑,KCL 还在 Kubernetes 配置校验方面提供了许多开箱即用的模型比如容器服务校验模型、镜像准入模型、Pod Container Policy (PSP) 模型等来解决云原生供应链当中的安全和合规问题。比如可以通过 `disallow-svc-lb` 模型来验证 `Service` 资源中是否错误地设置了 `LoadBalancer` 类型;通过 `https-only` 模型来验证 `Ingress` 资源中是否包含了显示设置为 https 的 label 注解。
+
+相比于其他策略工具或引擎,使用 KCL 的好处是一份校验模型可以同时在客户端和运行时使用,并且可以同时在编程语言界面同时定义 Schema 和约束条件,无需额外配合 OpenAPI Schema 或者 JSON Schema 使用。
+
+![kcl-operator](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator.png)
+
+除了在客户端完成配置的抽象、编辑和校验,KCL 还提供了运行时支持。KCL Operator 提供了 Kubernetes 集群集成,允许在将 Kubernetes 资源应用到集群时使用 Access Webhook 根据 KCL 配置生成、变异或验证资源。Webhook 将捕获创建、应用和编辑操作,并 `KCLRun` 在与每个操作关联的配置上执行资源[14]。
+
+使用 KCL Operator, 通过几个步骤就可以在 Kubernetes 集群内部以很轻量的方式地通过 KCL 代码自动化地完成资源配置的管理和安全验证,无需重复开发 Webhook Server 在运行时动态修改和验证配置。
+
+### Terraform
+
+另外一个 KCL 聚焦的场景是 Terraform 的生态模型。
+
+![tf-validation](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation.png)
+
+在云原生供应链场景中,除了用户的业务代码,往往也需要验证 IaC 代码的安全性,因此 KCL 也提供了与 Terraform 相关的验证模型。比如图中的示例仅需要编写几行 KCL 代码就可以完成在 AWS 资源组的自动扩缩操作中禁止删除资源的需求[15]。
+
+相比于其他策略引擎或工具,KCL 支持一键从 Terraform Provider Schema 转换为 KCL Schema, 可以很好地降低策略编写的难度。
+
+### IaC & GitOps
+
+![gitops](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops.png)
+
+无论是 Kubernetes 模型还是 Terraform 模型,不论是使用独立的 KCL 还是 KRM KCL 配置形式,KCL 都支持与各种以及 CI/CD 和 GitOps 工具的集成,KCL 允许开发人员以声明式的方式定义应用程序所需的资源,通过将 KCL 和 GitOps 工具相结合可以帮助我们更好地实现 IaC,提高部署效率,简化应用程序的配置管理[16]。
+
+使用 GitOps,开发人员和运维团队可以通过分别修改应用和配置代码来管理应用程序的部署,GitOps 工具链可以基于 KCL 的自动化能力实现对配置的自动更改,从而实现持续部署并确保一致性。如果出现问题,可以使用 GitOps 工具链快速回滚。
+
+![app-delivery](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery.png)
+
+KCL 也可以被用于企业内部与各种 CI/CD 和应用配置交付引擎比如 KusionStack 等相配合,实现关注点分离、以应用为中心的可编程模型界面和 GitOps 流程,以简化当今混合多云环境中规模化应用的部署和运维操作,提升发布运维效率和开发者体验。
+
+![k8s-abstraction](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction.png)
+
+此外,使用 KCL 的 Schema 结构和 自动化 API,我们可以在外部系统中集成 KCL 并使用 CLI/API/UI 形式实现对 KCL 配置的自动增删改查,在实现 GitOps & IaC 的基础上,同时为研发人员提供一个良好的配置管理界面,支持以 UI 表单形式实现对 KCL 代码的变更,提升配置管理和应用交付的效率,避免配置漂移等问题。
+
+## 小结
+
+![summary](/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/summary.png)
+
+本篇文章主要回顾了 CNCF KCD 社区会议 KCL 演讲内容,讲述了云原生领域特别是 Kubernetes 和 Terraform 生态中遇到的问题以及 KRM KCL 规范的概念、用户体验和实践。
+
+当然,KCL 能够解决的问题和实践的场景远不止如此,受限于本文篇幅,我们后续会陆续分享社区中采用者的最佳实践,也欢迎大家加入我们的社区进行进一步交流和讨论 ❤️。https://github.com/kcl-lang/community
+
+## 其他资源
+
+更多其他资源请参考:
+
++ [KCL 网站](https://kcl-lang.io/)
++ [KCL GitHub 仓库](https://github.com/kcl-lang/)
++ [KusionStack 网站](https://kusionstack.io/)
++ [KusionStack GitHub 仓库](https://github.com/KusionStack/)
+
+## 参考
+
++ [1] Forecast Analysis: Container Management (Software and Services), Worldwide: https://www.gartner.com/en/documents/3985796
++ [2] The top programming languages: https://octoverse.github.com/2022/top-programming-languages
++ [3] Kubernetes 中的声明式应用管理: [https://docs.google.com/document/d/1cLPGweVEYrVqQvBLJg6sxV-TrE5Rm2MNOBA_cxZP2WU/edit#](https://docs.google.com/document/d/1cLPGweVEYrVqQvBLJg6sxV-TrE5Rm2MNOBA_cxZP2WU/edit#)
++ [4] CNCF 平台工程白皮书: [https://tag-app-delivery.cncf.io/whitepapers/platforms/](https://tag-app-delivery.cncf.io/whitepapers/platforms/)
++ [5] Google SRE 工作手册: [https://sre.google/workbook/configuration-specifics/](https://sre.google/workbook/configuration-specifics/)
++ [6] KCL 官方网站: [https://kcl-lang.io/](https://kcl-lang.io/)
++ [7] Kubectl: [https://kubernetes.io/docs/reference/kubectl/](https://kubernetes.io/docs/reference/kubectl/)
++ [8] KusionStack: [https://kusionstack.io](https://kusionstack.io)
++ [9] KubeVela: [https://kubevela.net](https://kubevela.net)
++ [10] Helmfile: [https://github.com/helmfile/helmfile](https://github.com/helmfile/helmfile)
++ [11] KRM KCL 规范: [https://github.com/kcl-lang/krm-kcl](https://github.com/kcl-lang/krm-kcl)
++ [12] KCL IDE 插件: [https://kcl-lang.io/docs/tools/Ide/](https://kcl-lang.io/docs/tools/Ide/)
++ [13] ArtifactHub KCL 集成: [https://artifacthub.io/](https://artifacthub.io/)
++ [14] KCL Operator: [https://github.com/kcl-lang/kcl-operator](https://github.com/kcl-lang/kcl-operator)
++ [15] Terraform KCL 策略代码化: [https://kcl-lang.io/docs/user_docs/guides/working-with-terraform/validation](https://kcl-lang.io/docs/user_docs/guides/[]working-with-terraform/validation)
++ [16] 使用 KCL 进行 GitOps: [https://kcl-lang.io/docs/user_docs/guides/gitops/gitops-quick-start](https://kcl-lang.io/docs/user_docs/guides/gitops/gitops-quick-start)
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery-en.jpg
new file mode 100644
index 00000000..830d325e
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery.png
new file mode 100644
index 00000000..f0dce824
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/app-delivery.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub-k8s.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub-k8s.png
new file mode 100644
index 00000000..11d69bdc
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub-k8s.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub.png
new file mode 100644
index 00000000..5f729a04
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/artifact-hub.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading-en.jpg
new file mode 100644
index 00000000..bc91a016
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading.png
new file mode 100644
index 00000000..3201fe5a
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/cognitive-loading.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops-en.jpg
new file mode 100644
index 00000000..33e6d1a0
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops.png
new file mode 100644
index 00000000..0a77c2a4
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/gitops.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/ide.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/ide.png
new file mode 100644
index 00000000..6dc7af35
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/ide.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration-en.jpg
new file mode 100644
index 00000000..a49bf312
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration.png
new file mode 100644
index 00000000..490f26f6
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/integration.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/issues.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/issues.png
new file mode 100644
index 00000000..dbc8f966
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/issues.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction-en.jpg
new file mode 100644
index 00000000..d777cfaa
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction.png
new file mode 100644
index 00000000..5f896386
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-abstraction.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation-en.jpg
new file mode 100644
index 00000000..bb67d55f
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation.png
new file mode 100644
index 00000000..d56a507b
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-mutation.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation-en.jpg
new file mode 100644
index 00000000..ea4dedda
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation.png
new file mode 100644
index 00000000..d0cfde3a
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/k8s-validation.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept-en.jpg
new file mode 100644
index 00000000..9130eb28
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept.png
new file mode 100644
index 00000000..a24318a9
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-concept.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro-en.jpg
new file mode 100644
index 00000000..4cb16116
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro.png
new file mode 100644
index 00000000..a01423b7
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-intro.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator-en.jpg
new file mode 100644
index 00000000..9b9fbd26
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator.png
new file mode 100644
index 00000000..e8f6b58a
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/kcl-operator.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl-en.jpg
new file mode 100644
index 00000000..49e5a38b
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl.png
new file mode 100644
index 00000000..2e3619fe
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/krm-kcl.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/performance.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/performance.png
new file mode 100644
index 00000000..d9e270b2
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/performance.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/registry.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/registry.png
new file mode 100644
index 00000000..f3163ba5
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/registry.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/summary.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/summary.png
new file mode 100644
index 00000000..09057401
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/summary.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation-en.jpg b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation-en.jpg
new file mode 100644
index 00000000..7d38f68d
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation-en.jpg differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation.png
new file mode 100644
index 00000000..3940d423
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/tf-validation.png differ
diff --git a/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/workspace.png b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/workspace.png
new file mode 100644
index 00000000..c267bd83
Binary files /dev/null and b/static/img/blog/2023-10-23-cloud-native-supply-chain-krm-kcl-spec/workspace.png differ