forked from koskenni/pytwolc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
entry-pattern.py
172 lines (155 loc) · 6.67 KB
/
entry-pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
""" entry-pattern.py: produces either a converter or a guesser from *pat.csv
Copyright © 2017, Kimmo Koskenniemi
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import csv, re, argparse
from collections import OrderedDict
multich_set = set()
definitions = OrderedDict()
##patterns = OrderedDict()
pattern_lst = [] # a list of tuples (cont, iclass, expr, weight, comment)
singleton_lst = [] # list of tuples (cont, iclass, input, output, weight, comment)
cont_set = set()
iclass_set = set()
def extract_multichs(regexp):
global multich_set, definitions
rege = re.sub(r"([][()|\$\&\-\+*: ]|\.[iul]|\.o\.)+", ",", regexp)
lst = re.split(r",", rege)
for nm in lst:
if len(nm) > 1 and (nm not in definitions):
multich_set.add(nm)
return
def add_perc(str):
return re.sub(r"([{'}])", r"%\1", str)
def proj_down_regex(str):
lst = re.split(r"([\]\[\|\-\+\* ]+|\.[iul]|\.o\.)", str)
downlst = [re.sub(r"([a-zåäö'øØ0]):({[a-zåäö'øØ]+}|0)", r"\2", el) for el in lst]
reslst = [re.sub(r"^0$", r"", el) for el in downlst]
res = "".join(reslst)
res = re.sub(r"\s+\[\s*\|\s*\]\s*", r" ", res)
res = re.sub(r"\s+", r" ", res)
res = re.sub(r"\s+$", r"", res)
return res
def patterns2converter(outfile):
global multich_set, iclass_set, cont_set
print("Multichar_Symbols", file=outfile)
print(" ", " ".join(sorted(multich_set)), file=outfile)
print(" ", " ".join(sorted(iclass_set)), file=outfile)
print(" ", " ".join(sorted(cont_set)), file=outfile)
print("Definitions", file=outfile)
for dn in definitions.keys():
print(" ", dn, "=", add_perc(definitions[dn]), ";", file=outfile)
print("LEXICON Root", file=outfile)
for cont, iclass, input, output, weight, comment in singleton_lst:
w = ' "weight: ' + weight + '"' if weight else ""
i_class = re.sub(r"([*])", r"%\1", iclass)
print(input + i_class + ":" + output ,
cont, w, '; !', comment, file=outfile)
for cont, iclass, pat, weight, comment in pattern_lst:
##w = ' "weight: ' + weight + '"' if weight else ""
w = "::" + weight if weight else ""
i_class = re.sub(r"([*])", r"%\1", iclass)
print("<", add_perc(pat[1:-1]),
i_class + ":0" + w + " >",
cont, "; !", comment, file=outfile)
for cont in sorted(list(cont_set)):
print("LEXICON", cont, file=outfile)
print(":% " + cont, "# ;", file=outfile)
return
def patterns2guesserlex(outfile):
print("Multichar_Symbols", file=outfile)
print(" ", " ".join(sorted(multich_set)), file=outfile)
print(" ", " ".join(sorted(cont_set)), file=outfile)
print("Definitions", file=outfile)
for dn in definitions.keys():
downde = proj_down_regex(definitions[dn])
print(" ", dn, "=", add_perc(downde), ";", file=outfile)
print("LEXICON Root", file=outfile)
for cont, iclass, input, output, weight, comment in singleton_lst:
w = ' "weight: ' + weight + '"' if weight else ""
print(output, cont, w, '; !', comment, file=outfile)
for cont, iclass, pat, weight, comment in pattern_lst:
w = '"weight: '+weight+'"' if weight else ""
downpat = proj_down_regex(pat[1:-1])
print("<", add_perc(downpat), ">", cont, w, ";", file=outfile)
return
argparser = argparse.ArgumentParser(
"python3 entry-pattern.py",
description="Writes a LEXC file for either a guesser or a converter")
argparser.add_argument(
"input", help="A csv input file containing the patterns as regular expressions")
argparser.add_argument(
"output", help="A LEXC output file. The patterns are "
"converted into appropriate LEX entries.")
argparser.add_argument(
"-c", "--classes",
help="Produce a converter instead of a guesser and "
"output a file containing all inflectional classe identifiers "
"found in the patterns. Output them as a space-separated string")
argparser.add_argument("-d", "--delimiter", default=",",
help="CSV field delimiter (default is ',')")
argparser.add_argument(
"-v", "--verbosity", default=0, type=int,
help="level of diagnostic output")
args = argparser.parse_args()
patfile = open(args.input, "r")
pat_rdr = csv.DictReader(patfile, delimiter=args.delimiter)
prevID = ";;;"
for r in pat_rdr:
if args.verbosity >= 10:
print(r)
cont, i_class, mfon, comment = r['CONT'], r['ICLASS'], r['MPHON'], r['COMMENT']
if cont != "" and cont[0] == '!':
if args.verbosity >= 10:
print("- it is a comment line")
continue
if cont == "Define":
if args.verbosity >= 10:
print("- it is a definition")
definitions[i_class] = mfon
else:
cont_set.add(cont)
iclass_set.add(i_class)
m = re.match(r"^\s*(<.*>)\s*([0-9]*)\s*$", mfon)
if m: # it looks like a reg ex pattern
if args.verbosity >= 10:
print("- it is a pattern")
regex = m.group(1)
weight = m.group(2)
pattern_lst.append((cont, i_class, regex, weight, comment))
continue
m = re.match(r"^\s*([a-zåäöšž']+):([a-zåäöšžA-ZÅÄÖŠŽ{Ø'}]+)\s*([0-9]*)\s*$",
mfon)
#print(cont, i_class, mfon)###
if m: # it looks like a direct result for a single entry
if args.verbosity >= 10:
print("- it is a single entry")
singleton_lst.append((cont, i_class,
m.group(1), m.group(2), m.group(3),
comment))
else: # not valid at all
print("***", r, "***")
patfile.close()
#print(singleton_lst)###
for cont, iclass, pat, weight, comment in pattern_lst:
extract_multichs(pat[1:-1])
for dn,pe in definitions.items():
extract_multichs(pe)
outfile = open(args.output, "w")
if args.classes:
patterns2converter(outfile)
if args.classes:
classfile = open(args.classes, "w")
print(" ".join(sorted(list(iclass_set))), file=classfile)
classfile.close()
else:
patterns2guesserlex(outfile)