forked from abuabara/TxGIS-Day-2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TxGISday2020_Spatial_Analysis_in_R.R
361 lines (293 loc) · 10.6 KB
/
TxGISday2020_Spatial_Analysis_in_R.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#### Author: Alexander Abuabara
#### Date: 2020 November 17
#### Project: TxGISday2020
#### Available at: https://github/abuabara/TxGISday2020
setwd("/Users/alexander/Library/Mobile Documents/com~apple~CloudDocs/R/GISday2020/Tue_R/")
###### RASTER ######
###### Slide 19 - Creating Raster objects from scratch ######
library(raster)
r <- raster(ncol=10, nrow=10)
ncell(r)
hasValues(r)
values(r) <- 1:ncell(r)
set.seed(0)
values(r) <- runif(ncell(r))
hasValues(r)
inMemory(r)
values(r)[1:10]
plot(r, main='Raster with 100 cells')
###### Slide 20 - Raster algebra ######
r
values(r)[1:10]
s <- r + 10
values(s)[1:10]
s <- sqrt(s)
values(s)[1:10]
s <- s * r + 5
values(s)[1:10]
r[] <- runif(ncell(r))
values(r)[1:10]
r <- round(r)
values(r)[1:10]
r <- r == 1
values(r)[1:10]
###### Slide 21 - Raster histogram ######
hist(s,
main="Distribution of Raster Data\n Histogram of 10x10 pixels values",
xlab="Elevation Value (m)",
ylab="Frequency",
col="wheat")
###### Slide 22 - Multiple layers ######
r <- raster(ncol=10, nrow=10)
r[] <- runif(ncell(r))
s <- stack(r, r+1)
q <- stack(r, r+2, r+4, r+6)
x <- r + s + q
x
plot(x, main='Stack of rasters')
###### Slide 24 - Multiple layers ######
b <- brick(system.file("external/rlogo.grd", package="raster"))
plot(b)
plotRGB(b, r=1, g=2, b=3)
###### Slide 25 - Summary functions ######
?mean
mean(0:10)
a <- mean(r,s)
values(a)[1:10]
b <- sum(r,s)
values(b)[1:10]
st <- stack(r, s, a, b)
sst <- sum(st)
values(sst)[1:10]
cellStats(st, "sum")
cellStats(sst, "sum")
###### Spatial vector data ######
###### Slide 32 - Basics ######
library(tidyverse)
library(sf)
###### Slide 33 - Line example ######
storms_xyz_feature <- system.file("shape/storms_xyz_feature.shp", package="sf") %>%
st_read() %>%
st_as_sf()
plot(storms_xyz_feature, graticule = TRUE, axes = TRUE)
# or
# ggplot(storms_xyz_feature) +
# geom_sf(aes(color = Track))
###### Slide 34 - Polygon example ######
nc <- system.file("shape/nc.shp", package="sf") %>%
st_read() %>%
st_as_sf()
plot(nc$geometry, graticule = TRUE, axes = TRUE)
###### Slide 35 - Attributes ######
plot(nc, graticule = TRUE, axes = TRUE)
###### Slide 36 - ggplot ######
ggplot(nc) +
geom_sf(aes(fill = NAME))
###### Slide 37 & 38- Dissolve features ######
nc %>%
group_by() %>%
summarise() %>%
# plot(graticule = TRUE, axes = TRUE)
ggplot() +
geom_sf(fill = "#4B9CD3",
color = "red")
###### Slide 39 - Filter attributes ######
nc %>%
filter(NAME %in% c("Alexander", "Beaufort", "Lee", "Jackson", "Washington")) %>%
ggplot() +
geom_sf(aes(fill = NAME))
###### Mapping ######
###### Slide 41 - ggplot ######
ggplot() +
geom_sf(data = nc,
fill = "#4B9CD3", alpha = 0.2,
color = "black") +
geom_sf(data = nc %>%
filter(NAME %in% c("Alexander", "Beaufort", "Lee", "Jackson", "Washington")),
aes(fill = NAME)) +
labs(title = "North Caroline Counties",
legend = "Selected Counties") +
theme_minimal()
###### Slide 42 - ggplot ######
ggplot() +
geom_sf(data = nc %>%
group_by() %>%
summarise(),
fill = "#4B9CD3", alpha = 0.2,
color = "red") +
geom_sf(data = nc %>%
filter(NAME %in% c("Alexander", "Beaufort", "Lee", "Jackson", "Washington")),
aes(fill = NAME)) +
labs(title = "North Caroline Counties",
legend = "Selected Counties") +
theme_minimal()
###### Slide 43 - ggplot ######
library(maps)
some_point <- data.frame(longitude = c(-96.30),
latitude = c(30.63))
us <- st_as_sf(map("state", plot = FALSE, fill = TRUE))
us
class(us)
ggplot(data = us) +
geom_sf()
###### Slide 44 - ggplot ######
ggplot() +
geom_sf(data = us) +
geom_sf(data = us %>% filter(ID == "texas"), fill = "gold") +
geom_point(data = some_point,
aes(x = longitude, y = latitude),
size = 4, shape = 23, fill = "darkred")
###### Slide 45 - leaflet ######
library(leaflet)
TxGIS = c("TAMU College Station")
leaflet() %>%
addProviderTiles("OpenStreetMap.Mapnik") %>% # OpenStreetMap.Mapnik NASAGIBS.ViirsEarthAtNight2012
addMarkers(lng = some_point$longitude,
lat = some_point$latitude,
popup = TxGIS)
###### Walking, Cycling, and Driving Distances ######
###### Step 1 install libraries and obtain a API ######
# To get started, sign up for a Mapbox account and generate an access token.
# Set your public or secret token for use in the package with mb_access_token():
# Once you’ve set your token, you are ready to get started using the package.
# https://docs.mapbox.com/api/
# https://account.mapbox.com
###### Slide 48 - leaflet ######
# remotes::install_github("walkerke/mapboxapi")
library(mapboxapi)
# mb_access_token("pk.ey...", install = TRUE)
# library(sf)
# library(ggplot2)
# library(tidyverse)
###### Slide 49 - Step 2 geocode an address ######
address <- "Texas A&M University, Langford Architecture Bldg 3137, College Station, TX 77843"
address <- c(-96.301250, 30.624556)
walk_5min <- mb_isochrone(address,
profile = "walking",
time = 5)
bike_5min <- mb_isochrone(address,
profile = "cycling",
time = 5)
drive_5min <- mb_isochrone(address,
profile = "driving",
time = 5)
###### Slide 50 - Step 2 geocode an address ######
library(ggmap)
library(gridExtra)
bbox = c(left = as.numeric(st_bbox(drive_5min)$xmin-0.05),
bottom = as.numeric(st_bbox(drive_5min)$ymin-0.025),
right = as.numeric(st_bbox(drive_5min)$xmax+0.05),
top = as.numeric(st_bbox(drive_5min)$ymax+0.025))
map <- get_stamenmap(bbox,
maptype = "toner-2011",
zoom = 13)
theme_set(theme_bw())
###### Slide 51 - Step 3: pick a basemap ######
ggmap(map) +
theme_void() +
theme(plot.title = element_text(colour = "orange"),
panel.border = element_rect(colour = "black",
fill = NA, size = .7))
###### Slide 52 - Step 4: the distance map ######
ggmap(map) +
geom_sf(data = drive_5min,
aes(fill = "driving"),
color = "white", alpha=0.6, linetype = "blank",
show.legend = TRUE, inherit.aes = FALSE) +
geom_sf(data=bike_5min,
aes(fill="cycling"),
color="white", alpha=0.8, linetype = "blank",
show.legend = TRUE, inherit.aes = FALSE) +
geom_sf(data=walk_5min,
aes(fill="walking"),
color="white", alpha=0.7, linetype = "blank",
show.legend = TRUE, inherit.aes = FALSE) +
scale_fill_manual(values = c("walking" = "green",
"cycling" = "blue2",
"driving" = "red"),
breaks = c("walking", "cycling", "driving")) +
labs(x="",
y="",
title="5-minute time-distances",
fill="") +
theme(legend.justification="left",
panel.background=element_rect(fill="grey", colour="grey", size=0.5, linetype="solid"),
panel.grid.major=element_line(size=0.2, linetype="solid", colour="white"),
panel.grid.minor=element_line(size=0.2, linetype="solid", colour="white")) # -> temp2
# ggsave("Example_5_min_dist.png")
###### Slide 53 - Step 5: an interactive Leaflet map ######
leaflet(walk_5min) %>%
addMapboxTiles(style_id = "streets-v11",
username = "mapbox") %>%
addPolygons()
###### Slide 54 - Step 6: a more complex interactive Leaflet map ######
leaflet() %>%
addMapboxTiles(style_id = "streets-v11",
username = "mapbox") %>%
addProviderTiles(providers$Stamen) %>% # Stamen Stamen.Toner Stamen.TonerHybrid OpenTopoMap Esri.WorldImagery
addPolygons(data = drive_5min, color = "red", group = "Driving") %>%
addPolygons(data = bike_5min, color = "green", group = "Cycling") %>%
addPolygons(data = walk_5min, color = "blue", group = "Walking") %>%
addLayersControl(overlayGroups = c("Driving", "Cycling", "Walking"),
options = layersControlOptions(collapsed = FALSE)) # -> m
###### Slide 54 - Step 7: save it ######
library(htmlwidgets)
# saveWidget(m, file="m.html")
library(webshot)
# webshot("m.html", file = "Rplot1.png", cliprect = "viewport")
###### Elevation Analysis ######
###### Slide 61 - Step 1: Load packages and define a boundary box ######
if(!require(pacman)){install.packages("pacman"); library(pacman)}
p_load(dplyr, elevatr, haven, lwgeom, maps, raster, rgdal, rgeos, sf, sp, tigris)
bbox
aux <- as.numeric(bbox)
e <- as(raster::extent(aux[1], aux[3], aux[2], aux[4]), "SpatialPolygons")
proj4string(e) <- st_crs(drive_5min)$proj4string
# proj4string(e) <- CRS("+proj=utm +zone=10 +datum=WGS84")
###### Slide 62 - Step 2: Get elevation ######
x <- get_elev_raster(e, prj=sp::proj4string(e), z=11, src="aws") # 1 to 14
plot(x)
###### Slide 63 - Step 3: 20 m elevation mask ######
min_value <- minValue(x)
maxValue(x)
x2 <- x
x2[x2 <= min_value] <- NA; x2[x2 >= (min_value + 20)] <- NA
plot(x2)
writeRaster(x, filename="elev_z12.tif", format="GTiff", overwrite=T)
###### Slide 64 - Step 4: 20 m elevation polygonized ######
x2_poly <- spex::polygonize(x2) %>%
group_by() %>%
st_union() %>%
st_make_valid()
st_area(x2_poly)
plot(st_geometry(x2_poly), graticule=TRUE, axes=TRUE)
###### Slide 65 & 66 - Step 5: Plot ######
bbox = c(left = as.numeric(st_bbox(x2_poly)$xmin-0.05),
bottom = as.numeric(st_bbox(x2_poly)$ymin-0.025),
right = as.numeric(st_bbox(x2_poly)$xmax+0.05),
top = as.numeric(st_bbox(x2_poly)$ymax+0.025))
map <- get_stamenmap(bbox,
maptype = "toner-2011",
zoom = 12)
# ggplot() +
ggmap(map) +
geom_sf(data = x2_poly,
aes(fill = "low areas"),
color = "white", alpha = 0.6, linetype = "blank",
show.legend = TRUE, inherit.aes = FALSE) +
geom_sf(data = drive_5min,
aes(fill = "driving distance"),
color = "white", alpha = 0.6, linetype = "blank",
show.legend = TRUE, inherit.aes = FALSE) +
scale_fill_manual(values = c("driving distance" = "red",
"low areas" = "blue"),
breaks = c("driving distance",
"low areas")) +
labs(x="",
y="",
title="5-minute driving-distance and low areas",
fill="") +
theme(legend.justification="left",
panel.background=element_rect(fill="grey", colour="grey", size=0.5, linetype="solid"),
panel.grid.major=element_line(size=0.2, linetype="solid", colour="white"),
panel.grid.minor=element_line(size=0.2, linetype="solid", colour="white"))