-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
train_network.py
1431 lines (1213 loc) · 66.2 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import importlib
import argparse
import math
import os
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, List
import toml
from tqdm import tqdm
from comfy.utils import ProgressBar
import torch
from .library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
from .library import deepspeed_utils, model_util, strategy_base, strategy_sd
from .library import train_util as train_util
from .library.train_util import DreamBoothDataset
from .library import config_util as config_util
from .library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
from .library import huggingface_util as huggingface_util
from .library import custom_train_functions as custom_train_functions
from .library.custom_train_functions import (
apply_snr_weight,
get_weighted_text_embeddings,
prepare_scheduler_for_custom_training,
scale_v_prediction_loss_like_noise_prediction,
add_v_prediction_like_loss,
apply_debiased_estimation,
apply_masked_loss,
)
from .library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
class NetworkTrainer:
def __init__(self):
self.vae_scale_factor = 0.18215
self.is_sdxl = False
# TODO 他のスクリプトと共通化する
def generate_step_logs(
self,
args: argparse.Namespace,
current_loss,
avr_loss,
lr_scheduler,
lr_descriptions,
keys_scaled=None,
mean_norm=None,
maximum_norm=None,
):
logs = {"loss/current": current_loss, "loss/average": avr_loss}
if keys_scaled is not None:
logs["max_norm/keys_scaled"] = keys_scaled
logs["max_norm/average_key_norm"] = mean_norm
logs["max_norm/max_key_norm"] = maximum_norm
lrs = lr_scheduler.get_last_lr()
for i, lr in enumerate(lrs):
if lr_descriptions is not None:
lr_desc = lr_descriptions[i]
else:
idx = i - (0 if args.network_train_unet_only else -1)
if idx == -1:
lr_desc = "textencoder"
else:
if len(lrs) > 2:
lr_desc = f"group{idx}"
else:
lr_desc = "unet"
logs[f"lr/{lr_desc}"] = lr
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
# tracking d*lr value
logs[f"lr/d*lr/{lr_desc}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
elif args.optimizer_type.lower() == "ProdigyPlusScheduleFree".lower():
# tracking d*lr value
logs[f"lr/d*lr/{lr_desc}"] = (
lr_scheduler.optimizer.param_groups[i]["d"] * lr_scheduler.optimizer.param_groups[i]["lr"]
)
return logs
def assert_extra_args(self, args, train_dataset_group):
pass
def load_target_model(self, args, weight_dtype, accelerator):
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
# Incorporate xformers or memory efficient attention into the model
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
if torch.__version__ >= "2.0.0": # If you have xformers compatible with PyTorch 2.0.0 or higher, you can use the following
vae.set_use_memory_efficient_attention_xformers(args.xformers)
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet
def get_tokenize_strategy(self, args):
return strategy_sd.SdTokenizeStrategy(args.v2, args.max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_sd.SdTokenizeStrategy) -> List[Any]:
return [tokenize_strategy.tokenizer]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_sd.SdSdxlLatentsCachingStrategy(
True, args.cache_latents_to_disk, args.vae_batch_size, False
)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_sd.SdTextEncodingStrategy(args.clip_skip)
def get_text_encoder_outputs_caching_strategy(self, args):
return None
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
"""
Returns a list of models that will be used for text encoding. SDXL uses wrapped and unwrapped models.
"""
return text_encoders
# returns a list of bool values indicating whether each text encoder should be trained
def get_text_encoders_train_flags(self, args, text_encoders):
return [True] * len(text_encoders) if self.is_train_text_encoder(args) else [False] * len(text_encoders)
def is_train_text_encoder(self, args):
return not args.network_train_unet_only
def cache_text_encoder_outputs_if_needed(self, args, accelerator, unet, vae, text_encoders, dataset, weight_dtype):
for t_enc in text_encoders:
t_enc.to(accelerator.device, dtype=weight_dtype)
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
noise_pred = unet(noisy_latents, timesteps, text_conds[0]).sample
return noise_pred
def all_reduce_network(self, accelerator, network):
for param in network.parameters():
if param.grad is not None:
param.grad = accelerator.reduce(param.grad, reduction="mean")
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizers, text_encoder, unet):
train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizers[0], text_encoder, unet)
# region SD/SDXL
def post_process_network(self, args, accelerator, network, text_encoders, unet):
pass
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, device)
if args.zero_terminal_snr:
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images).latent_dist.sample()
def shift_scale_latents(self, args, latents):
return latents * self.vae_scale_factor
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet,
network,
weight_dtype,
train_unet,
):
# Sample noise, sample a random timestep for each image, and add noise to the latents,
# with noise offset and/or multires noise if specified
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
for x in noisy_latents:
x.requires_grad_(True)
for t in text_encoder_conds:
t.requires_grad_(True)
# Predict the noise residual
with accelerator.autocast():
noise_pred = self.call_unet(
args,
accelerator,
unet,
noisy_latents.requires_grad_(train_unet),
timesteps,
text_encoder_conds,
batch,
weight_dtype,
)
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
return noise_pred, target, timesteps, huber_c, None
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
if args.v_pred_like_loss:
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
if args.debiased_estimation_loss:
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, self.is_sdxl, True, False)
def update_metadata(self, metadata, args):
pass
def is_text_encoder_not_needed_for_training(self, args):
return False # use for sample images
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
# set top parameter requires_grad = True for gradient checkpointing works
text_encoder.text_model.embeddings.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
# endregion
def init_train(self, args):
session_id = random.randint(0, 2**32)
training_started_at = time.time()
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
deepspeed_utils.prepare_deepspeed_args(args)
setup_logging(args, reset=True)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
use_user_config = args.dataset_config is not None
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
tokenize_strategy = self.get_tokenize_strategy(args)
strategy_base.TokenizeStrategy.set_strategy(tokenize_strategy)
tokenizers = self.get_tokenizers(tokenize_strategy) # will be removed after sample_image is refactored
# prepare caching strategy: this must be set before preparing dataset. because dataset may use this strategy for initialization.
latents_caching_strategy = self.get_latents_caching_strategy(args)
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy)
pbar = ProgressBar(5)
# Prepare the dataset
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
if use_user_config:
logger.info(f"Loading dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignoring the following options because config file is found: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
# use arbitrary dataset class
train_dataset_group = train_util.load_arbitrary_dataset(args)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
if args.debug_dataset:
train_dataset_group.set_current_strategies() # dasaset needs to know the strategies explicitly
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
self.assert_extra_args(args, train_dataset_group) # may change some args
# prepare accelerator
logger.info("preparing accelerator")
accelerator = train_util.prepare_accelerator(args)
# Prepare a type that supports mixed precision and cast it as appropriate.
weight_dtype, save_dtype = train_util.prepare_dtype(args)
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
# Load the model
model_version, text_encoder, vae, unet = self.load_target_model(args, weight_dtype, accelerator)
# text_encoder is List[CLIPTextModel] or CLIPTextModel
text_encoders = text_encoder if isinstance(text_encoder, list) else [text_encoder]
pbar.update(1)
# Load the model for incremental learning
#sys.path.append(os.path.dirname(__file__))
accelerator.print("import network module:", args.network_module)
package = __name__.split('.')[0]
network_module = importlib.import_module(args.network_module, package=package)
if args.base_weights is not None:
# base_weights が指定されている場合は、指定された重みを読み込みマージする
for i, weight_path in enumerate(args.base_weights):
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
multiplier = 1.0
else:
multiplier = args.base_weights_multiplier[i]
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")
module, weights_sd = network_module.create_network_from_weights(
multiplier, weight_path, vae, text_encoder, unet, for_inference=True
)
module.merge_to(text_encoder, unet, weights_sd, weight_dtype, accelerator.device if args.lowram else "cpu")
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")
# cache latents
if cache_latents:
vae.to(accelerator.device, dtype=vae_dtype)
vae.requires_grad_(False)
vae.eval()
train_dataset_group.new_cache_latents(vae, True)
vae.to("cpu")
clean_memory_on_device(accelerator.device)
# cache text encoder outputs if needed: Text Encoder is moved to cpu or gpu
text_encoding_strategy = self.get_text_encoding_strategy(args)
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy)
text_encoder_outputs_caching_strategy = self.get_text_encoder_outputs_caching_strategy(args)
if text_encoder_outputs_caching_strategy is not None:
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_outputs_caching_strategy)
self.cache_text_encoder_outputs_if_needed(args, accelerator, unet, vae, text_encoders, train_dataset_group, weight_dtype)
pbar.update(1)
# prepare network
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
if args.dim_from_weights:
network, _ = network_module.create_network_from_weights(1, args.network_weights, vae, text_encoder, unet, **net_kwargs)
else:
if "dropout" not in net_kwargs:
# workaround for LyCORIS (;^ω^)
net_kwargs["dropout"] = args.network_dropout
network = network_module.create_network(
1.0,
args.network_dim,
args.network_alpha,
vae,
text_encoder,
unet,
neuron_dropout=args.network_dropout,
**net_kwargs,
)
if network is None:
return
network_has_multiplier = hasattr(network, "set_multiplier")
if hasattr(network, "prepare_network"):
network.prepare_network(args)
if args.scale_weight_norms and not hasattr(network, "apply_max_norm_regularization"):
logger.warning(
"warning: scale_weight_norms is specified but the network does not support it / scale_weight_normsが指定されていますが、ネットワークが対応していません"
)
args.scale_weight_norms = False
self.post_process_network(args, accelerator, network, text_encoders, unet)
# apply network to unet and text_encoder
train_unet = not args.network_train_text_encoder_only
train_text_encoder = self.is_train_text_encoder(args)
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
if args.network_weights is not None:
# FIXME consider alpha of weights: this assumes that the alpha is not changed
info = network.load_weights(args.network_weights)
accelerator.print(f"load network weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
if args.cpu_offload_checkpointing:
unet.enable_gradient_checkpointing(cpu_offload=True)
else:
unet.enable_gradient_checkpointing()
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders)):
if flag:
if t_enc.supports_gradient_checkpointing:
t_enc.gradient_checkpointing_enable()
del t_enc
network.enable_gradient_checkpointing() # may have no effect
# Prepare classes necessary for learning
accelerator.print("prepare optimizer, data loader etc.")
# make backward compatibility for text_encoder_lr
support_multiple_lrs = hasattr(network, "prepare_optimizer_params_with_multiple_te_lrs")
if support_multiple_lrs:
text_encoder_lr = args.text_encoder_lr
else:
text_encoder_lr = None if args.text_encoder_lr is None or len(args.text_encoder_lr) == 0 else args.text_encoder_lr[0]
try:
if support_multiple_lrs:
results = network.prepare_optimizer_params_with_multiple_te_lrs(text_encoder_lr, args.unet_lr, args.learning_rate)
else:
results = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr, args.learning_rate)
if type(results) is tuple:
trainable_params = results[0]
lr_descriptions = results[1]
else:
trainable_params = results
lr_descriptions = None
except TypeError as e:
trainable_params = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr)
lr_descriptions = None
# if len(trainable_params) == 0:
# accelerator.print("no trainable parameters found / 学習可能なパラメータが見つかりませんでした")
# for params in trainable_params:
# for k, v in params.items():
# if type(v) == float:
# pass
# else:
# v = len(v)
# accelerator.print(f"trainable_params: {k} = {v}")
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
self.optimizer_train_fn, self.optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args)
# prepare dataloader
# strategies are set here because they cannot be referenced in another process. Copy them with the dataset
# some strategies can be None
train_dataset_group.set_current_strategies()
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# # Calculate the number of learning steps
# if args.max_train_epochs is not None:
# args.max_train_steps = args.max_train_epochs * math.ceil(
# len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
# )
# accelerator.print(
# f"override steps. steps for {args.max_train_epochs} epochs is {args.max_train_steps}"
# )
# Send learning steps to the dataset side as well
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr scheduler init
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# Experimental function: performs fp16/bf16 learning including gradients, sets the entire model to fp16/bf16
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
network.to(weight_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
network.to(weight_dtype)
unet_weight_dtype = te_weight_dtype = weight_dtype
# Experimental Feature: Put base model into fp8 to save vram
if args.fp8_base or args.fp8_base_unet:
assert torch.__version__ >= "2.1.0", "fp8_base requires torch>=2.1.0"
assert (
args.mixed_precision != "no"
), "fp8_base requires mixed precision='fp16' or 'bf16'"
accelerator.print("enable fp8 training for U-Net.")
unet_weight_dtype = torch.float8_e4m3fn if args.fp8_dtype == "e4m3" else torch.float8_e5m2
accelerator.print(f"unet_weight_dtype: {unet_weight_dtype}")
if not args.fp8_base_unet and not args.network_train_unet_only:
accelerator.print("enable fp8 training for Text Encoder.")
te_weight_dtype = torch.float8_e4m3fn if args.fp8_dtype == "e4m3" else torch.float8_e5m2
# unet.to(accelerator.device) # this makes faster `to(dtype)` below, but consumes 23 GB VRAM
# unet.to(dtype=unet_weight_dtype) # without moving to gpu, this takes a lot of time and main memory
unet.to(accelerator.device, dtype=unet_weight_dtype) # this seems to be safer than above
unet.requires_grad_(False)
unet.to(dtype=unet_weight_dtype)
for i, t_enc in enumerate(text_encoders):
t_enc.requires_grad_(False)
# in case of cpu, dtype is already set to fp32 because cpu does not support fp8/fp16/bf16
if t_enc.device.type != "cpu":
t_enc.to(dtype=te_weight_dtype)
# nn.Embedding not support FP8
if te_weight_dtype != weight_dtype:
self.prepare_text_encoder_fp8(i, t_enc, te_weight_dtype, weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい / accelerator will do something good
if args.deepspeed:
flags = self.get_text_encoders_train_flags(args, text_encoders)
ds_model = deepspeed_utils.prepare_deepspeed_model(
args,
unet=unet if train_unet else None,
text_encoder1=text_encoders[0] if flags[0] else None,
text_encoder2=(text_encoders[1] if flags[1] else None) if len(text_encoders) > 1 else None,
network=network,
)
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ds_model, optimizer, train_dataloader, lr_scheduler
)
training_model = ds_model
else:
if train_unet:
unet = accelerator.prepare(unet)
else:
unet.to(accelerator.device, dtype=unet_weight_dtype) # move to device because unet is not prepared by accelerator
if train_text_encoder:
text_encoders = [
(accelerator.prepare(t_enc) if flag else t_enc)
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders))
]
if len(text_encoders) > 1:
text_encoder = text_encoders
else:
text_encoder = text_encoders[0]
else:
pass # if text_encoder is not trained, no need to prepare. and device and dtype are already set
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
network, optimizer, train_dataloader, lr_scheduler
)
training_model = network
if args.gradient_checkpointing:
# according to TI example in Diffusers, train is required
unet.train()
for i, (t_enc, frag) in enumerate(zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders))):
t_enc.train()
# set top parameter requires_grad = True for gradient checkpointing works
if frag:
self.prepare_text_encoder_grad_ckpt_workaround(i, t_enc)
else:
unet.eval()
for t_enc in text_encoders:
t_enc.eval()
del t_enc
accelerator.unwrap_model(network).prepare_grad_etc(text_encoder, unet)
if not cache_latents: # If you do not cache, VAE will be used, so enable VAE preparation.
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=vae_dtype)
# Experimental feature: Perform fp16 learning including gradients Apply a patch to PyTorch to enable grad scale in fp16
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
pbar.update(1)
# before resuming make hook for saving/loading to save/load the network weights only
def save_model_hook(models, weights, output_dir):
# pop weights of other models than network to save only network weights
# only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606
#if args.deepspeed:
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
if len(weights) > i:
weights.pop(i)
# print(f"save model hook: {len(weights)} weights will be saved")
# save current ecpoch and step
train_state_file = os.path.join(output_dir, "train_state.json")
# +1 is needed because the state is saved before current_step is set from global_step
logger.info(f"save train state to {train_state_file} at epoch {current_epoch.value} step {current_step.value+1}")
with open(train_state_file, "w", encoding="utf-8") as f:
json.dump({"current_epoch": current_epoch.value, "current_step": current_step.value + 1}, f)
steps_from_state = None
def load_model_hook(models, input_dir):
# remove models except network
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
models.pop(i)
# print(f"load model hook: {len(models)} models will be loaded")
# load current epoch and step to
nonlocal steps_from_state
train_state_file = os.path.join(input_dir, "train_state.json")
if os.path.exists(train_state_file):
with open(train_state_file, "r", encoding="utf-8") as f:
data = json.load(f)
steps_from_state = data["current_step"]
logger.info(f"load train state from {train_state_file}: {data}")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# resume from local or huggingface
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
pbar.update(1)
# Calculate the number of epochs
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training")
accelerator.print(f" num train images * repeats: {train_dataset_group.num_train_images}")
accelerator.print(f" num reg images: {train_dataset_group.num_reg_images}")
accelerator.print(f" num batches per epoch: {len(train_dataloader)}")
accelerator.print(f" num epochs: {num_train_epochs}")
accelerator.print(
f" batch size per device: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
accelerator.print(f" gradient accumulation steps: {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_text_encoder_lr": text_encoder_lr,
"ss_unet_lr": args.unet_lr,
"ss_num_train_images": train_dataset_group.num_train_images,
"ss_num_reg_images": train_dataset_group.num_reg_images,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
"ss_network_module": args.network_module,
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
"ss_network_alpha": args.network_alpha, # some networks may not have alpha
"ss_network_dropout": args.network_dropout, # some networks may not have dropout
"ss_mixed_precision": args.mixed_precision,
"ss_full_fp16": bool(args.full_fp16),
"ss_v2": bool(args.v2),
"ss_base_model_version": model_version,
"ss_clip_skip": args.clip_skip,
"ss_max_token_length": args.max_token_length,
"ss_cache_latents": bool(args.cache_latents),
"ss_seed": args.seed,
"ss_lowram": args.lowram,
"ss_noise_offset": args.noise_offset,
"ss_multires_noise_iterations": args.multires_noise_iterations,
"ss_multires_noise_discount": args.multires_noise_discount,
"ss_adaptive_noise_scale": args.adaptive_noise_scale,
"ss_zero_terminal_snr": args.zero_terminal_snr,
"ss_training_comment": args.training_comment, # will not be updated after training
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_caption_dropout_rate": args.caption_dropout_rate,
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
"ss_face_crop_aug_range": args.face_crop_aug_range,
"ss_prior_loss_weight": args.prior_loss_weight,
"ss_min_snr_gamma": args.min_snr_gamma,
"ss_scale_weight_norms": args.scale_weight_norms,
"ss_ip_noise_gamma": args.ip_noise_gamma,
"ss_debiased_estimation": bool(args.debiased_estimation_loss),
"ss_noise_offset_random_strength": args.noise_offset_random_strength,
"ss_ip_noise_gamma_random_strength": args.ip_noise_gamma_random_strength,
"ss_loss_type": args.loss_type,
"ss_huber_schedule": args.huber_schedule,
"ss_huber_c": args.huber_c,
"ss_fp8_base": bool(args.fp8_base),
"ss_fp8_base_unet": bool(args.fp8_base_unet),
}
self.update_metadata(metadata, args) # architecture specific metadata
if use_user_config:
# save metadata of multiple datasets
# NOTE: pack "ss_datasets" value as json one time
# or should also pack nested collections as json?
datasets_metadata = []
tag_frequency = {} # merge tag frequency for metadata editor
dataset_dirs_info = {} # merge subset dirs for metadata editor
for dataset in train_dataset_group.datasets:
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
dataset_metadata = {
"is_dreambooth": is_dreambooth_dataset,
"batch_size_per_device": dataset.batch_size,
"num_train_images": dataset.num_train_images, # includes repeating
"num_reg_images": dataset.num_reg_images,
"resolution": (dataset.width, dataset.height),
"enable_bucket": bool(dataset.enable_bucket),
"min_bucket_reso": dataset.min_bucket_reso,
"max_bucket_reso": dataset.max_bucket_reso,
"tag_frequency": dataset.tag_frequency,
"bucket_info": dataset.bucket_info,
}
subsets_metadata = []
for subset in dataset.subsets:
subset_metadata = {
"img_count": subset.img_count,
"num_repeats": subset.num_repeats,
"color_aug": bool(subset.color_aug),
"flip_aug": bool(subset.flip_aug),
"random_crop": bool(subset.random_crop),
"shuffle_caption": bool(subset.shuffle_caption),
"keep_tokens": subset.keep_tokens,
"keep_tokens_separator": subset.keep_tokens_separator,
"secondary_separator": subset.secondary_separator,
"enable_wildcard": bool(subset.enable_wildcard),
"caption_prefix": subset.caption_prefix,
"caption_suffix": subset.caption_suffix,
}
image_dir_or_metadata_file = None
if subset.image_dir:
image_dir = os.path.basename(subset.image_dir)
subset_metadata["image_dir"] = image_dir
image_dir_or_metadata_file = image_dir
if is_dreambooth_dataset:
subset_metadata["class_tokens"] = subset.class_tokens
subset_metadata["is_reg"] = subset.is_reg
if subset.is_reg:
image_dir_or_metadata_file = None # not merging reg dataset
else:
metadata_file = os.path.basename(subset.metadata_file)
subset_metadata["metadata_file"] = metadata_file
image_dir_or_metadata_file = metadata_file # may overwrite
subsets_metadata.append(subset_metadata)
# merge dataset dir: not reg subset only
# TODO update additional-network extension to show detailed dataset config from metadata
if image_dir_or_metadata_file is not None:
# datasets may have a certain dir multiple times
v = image_dir_or_metadata_file
i = 2
while v in dataset_dirs_info:
v = image_dir_or_metadata_file + f" ({i})"
i += 1
image_dir_or_metadata_file = v
dataset_dirs_info[image_dir_or_metadata_file] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
dataset_metadata["subsets"] = subsets_metadata
datasets_metadata.append(dataset_metadata)
# merge tag frequency:
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
# If a directory is used by multiple datasets, count only once
# Since the number of repetitions is originally specified, the number of times a tag appears in the caption does not match the number of times it is used in training.
# Therefore, it is not very meaningful to add up the number of times for multiple datasets here.
if ds_dir_name in tag_frequency:
continue
tag_frequency[ds_dir_name] = ds_freq_for_dir
metadata["ss_datasets"] = json.dumps(datasets_metadata)
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
else:
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir
assert (
len(train_dataset_group.datasets) == 1
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug."
dataset = train_dataset_group.datasets[0]
dataset_dirs_info = {}
reg_dataset_dirs_info = {}
if use_dreambooth_method:
for subset in dataset.subsets:
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
else:
for subset in dataset.subsets:
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
metadata.update(
{
"ss_batch_size_per_device": args.train_batch_size,
"ss_total_batch_size": total_batch_size,
"ss_resolution": args.resolution,
"ss_color_aug": bool(args.color_aug),
"ss_flip_aug": bool(args.flip_aug),
"ss_random_crop": bool(args.random_crop),
"ss_shuffle_caption": bool(args.shuffle_caption),
"ss_enable_bucket": bool(dataset.enable_bucket),
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
"ss_min_bucket_reso": dataset.min_bucket_reso,
"ss_max_bucket_reso": dataset.max_bucket_reso,
"ss_keep_tokens": args.keep_tokens,
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
"ss_bucket_info": json.dumps(dataset.bucket_info),
}
)
# add extra args
if args.network_args:
metadata["ss_network_args"] = json.dumps(net_kwargs)
# model name and hash
if args.pretrained_model_name_or_path is not None:
sd_model_name = args.pretrained_model_name_or_path
if os.path.exists(sd_model_name):
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
vae_name = args.vae
if os.path.exists(vae_name):
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_metadata = {}
for key in train_util.SS_METADATA_MINIMUM_KEYS:
if key in metadata:
minimum_metadata[key] = metadata[key]
# calculate steps to skip when resuming or starting from a specific step
initial_step = 0
if args.initial_epoch is not None or args.initial_step is not None:
# if initial_epoch or initial_step is specified, steps_from_state is ignored even when resuming
if steps_from_state is not None:
logger.warning(
"steps from the state is ignored because initial_step is specified"
)
if args.initial_step is not None:
initial_step = args.initial_step
else:
# num steps per epoch is calculated by num_processes and gradient_accumulation_steps
initial_step = (args.initial_epoch - 1) * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
else:
# if initial_epoch and initial_step are not specified, steps_from_state is used when resuming
if steps_from_state is not None:
initial_step = steps_from_state
steps_from_state = None
if initial_step > 0:
assert (
args.max_train_steps > initial_step
), f"max_train_steps should be greater than initial step: {args.max_train_steps} vs {initial_step}"
epoch_to_start = 0
if initial_step > 0:
if args.skip_until_initial_step:
# if skip_until_initial_step is specified, load data and discard it to ensure the same data is used
if not args.resume:
logger.info(
f"initial_step is specified but not resuming. lr scheduler will be started from the beginning"
)
logger.info(f"skipping {initial_step} steps")
initial_step *= args.gradient_accumulation_steps
# set epoch to start to make initial_step less than len(train_dataloader)
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
else:
# if not, only epoch no is skipped for informative purpose
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
initial_step = 0 # do not skip
noise_scheduler = self.get_noise_scheduler(args, accelerator.device)
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None: