-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
353 lines (326 loc) · 13.8 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
\documentclass[landscape,paperwidth=48in,paperheight=36in,fontscale=0.3]{baposter}
\usepackage{times}
\usepackage{calc}
\usepackage{url}
\usepackage{graphicx}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{relsize}
\usepackage{multirow}
\usepackage{multicol}
\usepackage{booktabs}
\usepackage{microtype}
\usepackage{graphicx}
\usepackage[T1]{fontenc}
\usepackage{ae}
\usepackage{enumitem}
\usepackage{colortbl}
\usepackage{xcolor}
\usepackage{tcolorbox}
\usepackage[vlined]{algorithm2e}
\usepackage{minted}
\let\vec\mathbf
\setlength{\algomargin}{0pt}
\setlist[itemize]{leftmargin=*,nosep}
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}
\setlist[enumerate]{leftmargin=2.3em,nosep}
\setlength{\columnsep}{0.5em}
\setlength{\columnseprule}{0mm}
% \setlength{\paperwidth}{60in} % A0 width: 46.8in
% \setlength{\paperheight}{36in} % A0 height: 33.1in
% \renewcommand{\rmdefault}{ptm} % Arial
% \renewcommand{\sfdefault}{ptm} % Arial
\renewcommand{\familydefault}{\sfdefault}
% define colors
\usepackage{colortbl}
\usepackage{xcolor}
\newcommand{\highlight}[2][yellow]{\mathchoice%
{\colorbox{#1}{$\displaystyle#2$}}%
{\colorbox{#1}{$\textstyle#2$}}%
{\colorbox{#1}{$\scriptstyle#2$}}%
{\colorbox{#1}{$\scriptscriptstyle#2$}}}%
\definecolor{ctitle}{HTML}{000000}
\definecolor{mypurple}{RGB}{223, 204, 251}
\definecolor{imptext}{RGB}{103, 65, 136} %116, 9, 56
\definecolor{rowcolor}{RGB}{209, 233, 246}
\definecolor{subtitlecolor}{RGB}{11, 47, 159}
\definecolor{mathcolor}{RGB}{209, 233, 246}
\definecolor{mathcolor2}{RGB}{238, 202, 213}
\begin{document}
\begin{poster}{
% Show grid to help with alignment
grid=false,
columns=4,
% Column spacing
colspacing=0.7em,
% Color style
headerColorOne=mypurple,
borderColor=mypurple,
% Format of textbox
textborder=faded,
% Format of text header
headerborder=open,
headershape=roundedright,
headershade=plain,
background=none,
bgColorOne=cyan!10!white,
headerheight=0.15\textheight}
{
\makebox[0.01\textwidth]{}
\includegraphics[width=0.08\linewidth]{logo/huawei.png}
\includegraphics[width=0.075\linewidth]{logo/vdsr_enhanced.jpg}
}
% Title
{
\\[0.3em]\sc\huge\bf Learning Truncated Causal History Model for Video Restoration
}
% Authors
{
\vspace{0.3em} Amirhosein Ghasemabadi$^{\clubsuit1,2}$ \enspace Muhammad Kamran Janjua$^{\clubsuit2}$ \enspace Mohammad Salameh$^2$ \enspace Di Niu$^1$ \\[0.2em]
{$^1$ECE Department, University of Alberta \enspace$^2$Huawei Technologies, Canada \\[0.1em] \(\clubsuit\) indicates equal contribution}
}
% University logo
{
\begin{tabular}{c}
\raisebox{-0.9\height}{\includegraphics[width=0.14\linewidth]{logo/nips}}\\[0.5em]
\raisebox{-0.5\height}{\includegraphics[width=0.12\linewidth]{logo/link.pdf}\hspace{0.002\linewidth}\includegraphics[height=0.05\linewidth]{logo/turtle_qr_code.png}}
\end{tabular}
}
\headerbox{\bf\color{ctitle}Overview}{name=summary,column=0,row=0,span=1}{
\begin{minipage}[c]{\textwidth}
\begin{itemize}
\item \textbf{Video Restoration Challenges}: \begin{itemize}
\item Effective information fusion across frames.
\item Handling the complexity of non-uniform motion between frames.
\end{itemize}
\item \textbf{Traditional methods} process a range of contextual frames either in \textbf{parallel}, leading to increased memory and inference costs or with \textbf{recurrence}, which results in error accumulation and limited parallelism.
\item To handle motion, methods in literature employ optical flow to explicitly estimate motion, however, optical flow suffers on degraded videos.
% \item \textbf{\textsc{TURTLE}} introduces the Causal History Model (CHM), which efficiently aligns and borrows information from previously processed frames by summarizing a truncated history of the earlier frames into an evolving state.
\item \textbf{\textsc{TURTLE}} introduces the Causal History Model (CHM), which efficiently \textcolor{imptext}{borrows information} from a truncated history of previously processed frames by implicitly compensating motion, maintaining high restoration quality while \textcolor{imptext}{significantly reducing memory and computational costs}.
\item \textbf{\textsc{TURTLE}} achieves state-of-the-art results on multiple video restoration benchmarks.
\end{itemize}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{ctitle}Method}{name=method,column=1,row=0,span=1}{
% \textbf{\color{blue}AMP: Adversarial Model Perturbation}\\
\begin{itemize}
\item \textsc{TURTLE} adopts a causal design to process frames online. \textsc{TURTLE}'s encoder is historyless i.e., it only processes a single frame, while the decoder stacks \textsf{CHM} blocks as blackboxes at several stages.
\item The decoder, therefore, conditions the restoration on the history of the input frame due to \textsf{CHM}.
\end{itemize}
\begin{minipage}{0.99\linewidth}
\centering
\includegraphics[width=\linewidth]{new_imgs/arch.pdf}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{ctitle}Experiments}{name=results,column=2,row=0,span=2}{
\begin{minipage}{0.9\linewidth}
\textbf{\color{blue}Results on Video Restoration Tasks:}
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.33\linewidth}
\centering
\resizebox{.95\linewidth}{!}{%
\begin{tabular}{lcc}
\toprule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
HRIR & 16.83 & 0.6402 \\
WeatherDiff & 20.98 & 0.6697 \\
FDM & 23.49 & 0.7657 \\
MetaRain (Scrt) & 22.21 & 0.6723 \\
MetaRain (Meta) & 23.49 & 0.7171 \\
NightRain & \underline{26.73} & \underline{0.8647} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{29.26} & \textbf{0.9250} \\
\midrule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
EDVR & 17.93 & 0.5790 \\
BasicVSR & 22.46 & 0.8473 \\
RDDNet & 22.97 & 0.8742 \\
BasicVSR\(++\) & 22.64 & 0.8618 \\
RVRT & 20.90 & 0.7974 \\
SVDNet & \underline{25.06} & \underline{0.9210} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{26.02} & \textbf{0.9230} \\
\bottomrule
\end{tabular}
}
\vspace{0.5em}
(a) Night Deraining \& Desnowing
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.33\linewidth}
\centering
\resizebox{.87\linewidth}{!}{%
\begin{tabular}{lcc}
\toprule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
STRCNN & 29.42 & 0.8930 \\
DBN & 31.21 & 0.9220 \\
IFI-RNN & 30.89 & 0.8820 \\
CDVD-TSP & \underline{31.58} & \underline{0.9260} \\
PVDNet & 31.35 & 0.9230 \\
ESTRNN & 31.39 & \underline{0.9260} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{33.58} & \textbf{0.9540} \\
\midrule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
ESTRNN & 31.07 & 0.9023 \\
EDVR & 31.54 & 0.9260 \\
FGST & 32.90 & 0.9610 \\
BasicVSR\(++\) & 34.01 & 0.9520 \\
GSTA & 32.10 & 0.9600 \\
DSTNet & \underline{34.16} & \underline{0.9679} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{34.50} & \textbf{0.9720} \\
\bottomrule
\end{tabular}
}
\vspace{0.5em}
(b) Real \& Synthetic Deblurring
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.33\linewidth}
\centering
\resizebox{.87\linewidth}{!}{%
\begin{tabular}{lcc}
\toprule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
VRT & 27.77 & 0.8856 \\
TTVSR & 28.05 & 0.8998 \\
RVRT & 28.24 & 0.8857 \\
BasicVSR\(++\) & 29.75 & 0.9171 \\
RDDNet & 28.38 & 0.9096 \\
ViMPNet & \underline{31.02} & \underline{0.9283} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{32.01} & \textbf{0.9590} \\
\midrule
\textbf{Methods} & \textbf{PSNR} (\(\uparrow\)) & \textbf{SSIM} (\(\uparrow\)) \\
\midrule
EDVR & 23.51 & 0.7492 \\
MANA & 23.15 & 0.7513 \\
TTVSR & 23.60 & 0.7686 \\
BasicVSR\(++\) & 23.70 & 0.7713 \\
EAVSR & 23.61 & 0.7618 \\
EAVSR\(+\) & \underline{23.94} & \underline{0.7726} \\
\rowcolor{rowcolor} \textbf{\textsc{TURTLE}} & \textbf{25.30} & \textbf{0.8272} \\
\bottomrule
\end{tabular}
}
\vspace{0.5em}
(c) Raindrop Removal \& SR
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.34\linewidth}
\textbf{\color{blue}Ablation Studies:}
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.65\linewidth}
\textbf{{\color{blue}Profiling \textsc{TURTLE}:}}
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.34\linewidth}
\centering
\resizebox{.9\linewidth}{!}{%
\begin{tabular}{@{}lll@{}}
\toprule
\textbf{Ablation Studies} & \textbf{Configurations} & \textbf{PSNR} (\(\uparrow\)) \\ \midrule
\multirow{3}{*}{State Align Block} & No \textsf{CHM} & 31.84 \\
& No \(\phi\) & 32.07 \\
& \textsc{TURTLE} & 32.36 \\ \midrule
\multirow{3}{*}{\begin{tabular}[c]{@{}l@{}}Truncation\\ Factor \(\tau\)\end{tabular}} & 1 & 32.15 \\
& 5 & 32.26 \\
& 3 (\textsc{TURTLE}) & 32.26 \\ \midrule
\multirow{3}{*}{k in \textit{topk}} & 1 & 32.18 \\
& 20 & 32.10 \\
& 5 (\textsc{TURTLE}) & 32.26 \\ \bottomrule
\end{tabular}
}
\end{minipage}
\begin{minipage}{0.65\linewidth}
\centering
\includegraphics[width=\linewidth]{new_imgs/memory_inf_comp1.pdf}
\end{minipage}
\begin{minipage}[t]{.7\linewidth}
\begin{minipage}{\linewidth}
\vspace{0.5em}
\textbf{\color{blue}Video Deblurring, Raindrop, \& Desnowing Results:}
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.99\linewidth}
\begin{minipage}{\linewidth}
\centering
\includegraphics[width=.99\linewidth]{new_imgs/main_fig_01.pdf}
\end{minipage}
\end{minipage}
\\
\begin{minipage}{\linewidth}
\vspace{0.5em}
\textbf{\color{blue}Real-World Restoration Results:}
\vspace{0.5em}
\end{minipage}
\begin{minipage}{0.99\linewidth}
\begin{minipage}{\linewidth}
\centering
\includegraphics[width=.99\linewidth]{new_imgs/main_fig_02.pdf}
\end{minipage}
\end{minipage}
\end{minipage}
\begin{minipage}[t]{.24\linewidth}
\small
\textbf{\color{blue}Denoising Results:}\\
\includegraphics[width=1.2\linewidth]{new_imgs/turtle_denoise.pdf}
\vspace{2em}
\textbf{\color{blue}References:}\\
\vspace{-2em}
\begin{enumerate}[label={[\arabic*]}]
\item Liang \textit{et al}. Recurrent video restoration transformer with guided deformable attention. NeurIPS 22.
\item Li \textit{et al}. A simple baseline for video restoration with grouped spatial-temporal shift. CVPR 23.
\item Liang \textit{et al}. Vrt: A video restoration transformer. TIP 24.
\end{enumerate}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{ctitle}Causal History Model (\textsf{CHM})}{name=algorithm,column=0,row=0.4,span=1}{
\begin{itemize}
\item Causal History Model \textcolor{imptext}{extends the state-space modeling paradigm to video processing.} CHM processes videos online and in streaming fashion.
\item \textbf{\textsf{CHM} models the evolving state and compensates the history for motion} relative to the input and learns to re-weight information in the history.
\item The \textbf{causal design in \textsc{Turtle} enables recurrence in inference} through state-memorized historical features (stateful configuration); \textbf{while allowing parallel training} by sampling short video clips (stateless configuration).
\item \textbf{\textsc{TURTLE}'s encoder processes each frame individually}, while its decoder reuses features from previously restored frames, based on the proposed Causal History Model (CHM).
\end{itemize}
\begin{align}
\label{eq:chm}
\vec{\hat{H}}_{t}^{[l]} &= \highlight[mathcolor]{\phi_{t}(\vec{H}_{t}^{[l]}, \vec{F}_{t}^{[l]})} \oplus \mathcal{B}_{t}(\vec{F}_{t}^{[l]}), \\
\label{eq:chm2}
\vec{y}_t^{[l]} &= \highlight[mathcolor2]{\psi_{t}(\vec{\hat{H}}_{t}^{[l]}, \vec{F}_{t}^{[l]})} + \mathcal{D}_{t}(\vec{F}_{t}^{[l]}).
\end{align}
\begin{itemize}
\item \textbf{\(\highlight[mathcolor]{\text{State Align Block}~\phi}\)}: implicitly tracks and aligns the \textit{topk} most relevant regions in the history with the input frame. Therefore, \(\phi\) compensates for motion the input with respect to the trajectory and establishes \textit{one-to-topk} correspondence.
\item \textbf{\(\highlight[mathcolor2]{\text{Frame History Router }~\psi}\)}: re-weights the motion compensated history along with the input, thereby encouraging \& accentuating relevant information.
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{ctitle}Is \textsc{CHM} Necessary?}{name=method,column=1,row=0.4,span=1,boxpadding=0.45em}{
\textbf{\color{blue}\textsf{CHM} Procedure:}
% \textsf{CHM} utilizes attention mechanism to compute region-wise correspondences in the history, and to re-weight the entire trajectory. However, in the first case, CHM limits the lookback window to \textit{topk} most similar regions to avoid spurious correlations hampering the flow of useful information.
\begin{itemize}
\item \textsf{CHM} utilizes an attention mechanism to compute region-wise correspondences in the history and to re-weight the entire trajectory.
\item However, \textsf{CHM} limits the lookback window to the \textit{top-k} most similar regions to avoid spurious correlations that may hamper the flow of useful information.
\end{itemize}
\begin{minipage}{\linewidth}
\centering
\includegraphics[width=.99\linewidth]{new_imgs/chm.pdf}
\end{minipage}
\vspace{0.4em}
\textbf{\color{blue}\textsf{CHM}'s Motivation:}
\begin{itemize}
\item We ablate the necessity of \textsf{CHM} for achieving high perceptual quality in restoration results.
\item In cases where specific regions in the current frame (input) are occluded, \textsf{CHM} retrieves similar information from past frames to restore the occluded areas.
\end{itemize}
\includegraphics[width=.99\linewidth]{new_imgs/nochm_diag.pdf}
}
\end{poster}
\end{document}