forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
cvrptw.cc
180 lines (165 loc) · 7.36 KB
/
cvrptw.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Capacitated Vehicle Routing Problem with Time Windows (and optional orders).
// A description of the problem can be found here:
// http://en.wikipedia.org/wiki/Vehicle_routing_problem.
// The variant which is tackled by this model includes a capacity dimension,
// time windows and optional orders, with a penalty cost if orders are not
// performed. For the sake of simplicty, orders are randomly located and
// distances are computed using the Manhattan distance. Distances are assumed
// to be in meters and times in seconds.
#include <vector>
#include "examples/cpp/cvrptw_lib.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"
using operations_research::ACMRandom;
using operations_research::Assignment;
using operations_research::DefaultRoutingSearchParameters;
using operations_research::GetSeed;
using operations_research::LocationContainer;
using operations_research::RandomDemand;
using operations_research::RoutingDimension;
using operations_research::RoutingIndexManager;
using operations_research::RoutingModel;
using operations_research::RoutingNodeIndex;
using operations_research::RoutingSearchParameters;
using operations_research::ServiceTimePlusTransition;
ABSL_FLAG(int, vrp_orders, 100, "Nodes in the problem.");
ABSL_FLAG(int, vrp_vehicles, 20,
"Size of Traveling Salesman Problem instance.");
ABSL_FLAG(bool, vrp_use_deterministic_random_seed, false,
"Use deterministic random seeds.");
ABSL_FLAG(bool, vrp_use_same_vehicle_costs, false,
"Use same vehicle costs in the routing model");
ABSL_FLAG(std::string, routing_search_parameters, "",
"Text proto RoutingSearchParameters (possibly partial) that will "
"override the DefaultRoutingSearchParameters()");
const char* kTime = "Time";
const char* kCapacity = "Capacity";
const int64 kMaxNodesPerGroup = 10;
const int64 kSameVehicleCost = 1000;
int main(int argc, char** argv) {
absl::ParseCommandLine(argc, argv);
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_orders))
<< "Specify an instance size greater than 0.";
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_vehicles))
<< "Specify a non-null vehicle fleet size.";
// VRP of size absl::GetFlag(FLAGS_vrp_size).
// Nodes are indexed from 0 to absl::GetFlag(FLAGS_vrp_orders), the starts and
// ends of
// the routes are at node 0.
const RoutingIndexManager::NodeIndex kDepot(0);
RoutingIndexManager manager(absl::GetFlag(FLAGS_vrp_orders) + 1,
absl::GetFlag(FLAGS_vrp_vehicles), kDepot);
RoutingModel routing(manager);
// Setting up locations.
const int64 kXMax = 100000;
const int64 kYMax = 100000;
const int64 kSpeed = 10;
LocationContainer locations(
kSpeed, absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
for (int location = 0; location <= absl::GetFlag(FLAGS_vrp_orders);
++location) {
locations.AddRandomLocation(kXMax, kYMax);
}
// Setting the cost function.
const int vehicle_cost =
routing.RegisterTransitCallback([&locations, &manager](int64 i, int64 j) {
return locations.ManhattanDistance(manager.IndexToNode(i),
manager.IndexToNode(j));
});
routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);
// Adding capacity dimension constraints.
const int64 kVehicleCapacity = 40;
const int64 kNullCapacitySlack = 0;
RandomDemand demand(manager.num_nodes(), kDepot,
absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
demand.Initialize();
routing.AddDimension(
routing.RegisterTransitCallback([&demand, &manager](int64 i, int64 j) {
return demand.Demand(manager.IndexToNode(i), manager.IndexToNode(j));
}),
kNullCapacitySlack, kVehicleCapacity, /*fix_start_cumul_to_zero=*/true,
kCapacity);
// Adding time dimension constraints.
const int64 kTimePerDemandUnit = 300;
const int64 kHorizon = 24 * 3600;
ServiceTimePlusTransition time(
kTimePerDemandUnit,
[&demand](RoutingNodeIndex i, RoutingNodeIndex j) {
return demand.Demand(i, j);
},
[&locations](RoutingNodeIndex i, RoutingNodeIndex j) {
return locations.ManhattanTime(i, j);
});
routing.AddDimension(
routing.RegisterTransitCallback([&time, &manager](int64 i, int64 j) {
return time.Compute(manager.IndexToNode(i), manager.IndexToNode(j));
}),
kHorizon, kHorizon, /*fix_start_cumul_to_zero=*/true, kTime);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(kTime);
// Adding time windows.
ACMRandom randomizer(
GetSeed(absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed)));
const int64 kTWDuration = 5 * 3600;
for (int order = 1; order < manager.num_nodes(); ++order) {
const int64 start = randomizer.Uniform(kHorizon - kTWDuration);
time_dimension.CumulVar(order)->SetRange(start, start + kTWDuration);
}
// Adding penalty costs to allow skipping orders.
const int64 kPenalty = 10000000;
const RoutingIndexManager::NodeIndex kFirstNodeAfterDepot(1);
for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
order < manager.num_nodes(); ++order) {
std::vector<int64> orders(1, manager.NodeToIndex(order));
routing.AddDisjunction(orders, kPenalty);
}
// Adding same vehicle constraint costs for consecutive nodes.
if (absl::GetFlag(FLAGS_vrp_use_same_vehicle_costs)) {
std::vector<int64> group;
for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
order < manager.num_nodes(); ++order) {
group.push_back(manager.NodeToIndex(order));
if (group.size() == kMaxNodesPerGroup) {
routing.AddSoftSameVehicleConstraint(group, kSameVehicleCost);
group.clear();
}
}
if (!group.empty()) {
routing.AddSoftSameVehicleConstraint(group, kSameVehicleCost);
}
}
// Solve, returns a solution if any (owned by RoutingModel).
RoutingSearchParameters parameters = DefaultRoutingSearchParameters();
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_routing_search_parameters), ¶meters));
const Assignment* solution = routing.SolveWithParameters(parameters);
if (solution != nullptr) {
DisplayPlan(manager, routing, *solution,
absl::GetFlag(FLAGS_vrp_use_same_vehicle_costs),
kMaxNodesPerGroup, kSameVehicleCost,
routing.GetDimensionOrDie(kCapacity),
routing.GetDimensionOrDie(kTime));
} else {
LOG(INFO) << "No solution found.";
}
return EXIT_SUCCESS;
}