forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
fap_parser.h
616 lines (530 loc) · 21.2 KB
/
fap_parser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Reading and parsing the data of Frequency Assignment Problem
// Format: http://www.inra.fr/mia/T/schiex/Doc/CELAR.shtml#synt
//
#ifndef OR_TOOLS_EXAMPLES_FAP_PARSER_H_
#define OR_TOOLS_EXAMPLES_FAP_PARSER_H_
#include <map>
#include <string>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_split.h"
#include "ortools/base/file.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
namespace operations_research {
// Takes a filename and a buffer and fills the lines buffer
// with the lines of the file corresponding to the filename.
void ParseFileByLines(const std::string& filename,
std::vector<std::string>* lines);
// The FapVariable struct represents a radio link of the
// frequency assignment problem.
struct FapVariable {
FapVariable()
: domain_index(-1),
domain_size(0),
domain(),
degree(0),
initial_position(-1),
mobility_index(-1),
mobility_cost(-1),
hard(false) {}
~FapVariable() {}
// Fields:
// the index of a subset of all available frequencies of the instance
int domain_index;
// the number of the frequencies available for the link
int domain_size;
// the link's domain, i.e. a finite set of frequencies that can be
// assigned to this link
std::vector<int> domain;
// the number of constraints in which the link appears
int degree;
// if positive, it means that the link has already been assigned a frequency
// of that value
int initial_position;
// the index of mobility cost
int mobility_index;
// the cost of modification of a link's pre-assigned value
int mobility_cost;
// if true, it means that the link's pre-assigned position cannot be modified
bool hard;
};
// The FapConstraint struct represents a constraint between two
// radio links of the frequency assignment problem.
struct FapConstraint {
FapConstraint()
: variable1(-1),
variable2(-1),
impact(0),
type(""),
operation(""),
value(-1),
weight_index(-1),
weight_cost(-1),
hard(false) {}
~FapConstraint() {}
// Fields:
// the index of the first variable appearing in the constraint
int variable1;
// the index of the second variable appearing in the constraint
int variable2;
// the importance of a constraint based on the degree of its variables,
// the operator used in the constraint ("=" or ">") and whether it is a hard
// or soft constraint and with what weight cost.
// impact = (max_degree + min_degree + operator_impact + hardness_impact)
int impact;
// the constraint type (D (difference), C (viscosity), F (fixed),P (prefix)
// or L (far fields)) which is not used in practice
std::string type;
// the operator used in the constraint ("=" or ">")
std::string operation;
// the constraint deviation: it defines the constant k12 mentioned in RLFAP
// description
int value;
// the index of weight cost
int weight_index;
// the cost of not satisfaction of the constraint
int weight_cost;
// if true, it means that the constraint must be satisfied
bool hard;
};
// The FapComponent struct represents an component of the RLFAP graph.
// It models an independent sub-problem of the initial instance.
struct FapComponent {
FapComponent() : variables(), constraints() {}
~FapComponent() {}
// Fields:
// the variable set of the sub-problem, i.e. the vertices of the component
std::map<int, FapVariable> variables;
// the constraint set of the sub-problem, i.e. the edges of the component
std::vector<FapConstraint> constraints;
};
// Parser of the var.txt file.
// This file describes all the variables in the instance.
// Each line corresponds to one variable.
class VariableParser {
public:
explicit VariableParser(const std::string& data_directory);
~VariableParser();
const std::map<int, FapVariable>& variables() const { return variables_; }
void Parse();
private:
const std::string filename_;
// A map is used because in the model, the variables have ids which may not
// be consecutive, may be very sparse and don't have a specific upper-bound.
// The key of the map, is the link's id.
std::map<int, FapVariable> variables_;
DISALLOW_COPY_AND_ASSIGN(VariableParser);
};
// Parser of the dom.txt file.
// This file describes the domains used by the variables of the problem.
// Each line describes one domain.
class DomainParser {
public:
explicit DomainParser(const std::string& data_directory);
~DomainParser();
const std::map<int, std::vector<int> >& domains() const { return domains_; }
void Parse();
private:
const std::string filename_;
// A map is used because in the model, the ids of the different available
// domains may be random values, since they are used as names. The key of the
// map is the subset's id.
std::map<int, std::vector<int> > domains_;
DISALLOW_COPY_AND_ASSIGN(DomainParser);
};
// Parse ctr.txt file.
// This file describes the constraints of the instance.
// Each line defines a binary constraint.
class ConstraintParser {
public:
explicit ConstraintParser(const std::string& data_directory);
~ConstraintParser();
const std::vector<FapConstraint>& constraints() const { return constraints_; }
void Parse();
private:
const std::string filename_;
std::vector<FapConstraint> constraints_;
DISALLOW_COPY_AND_ASSIGN(ConstraintParser);
};
// Parse cst.txt file.
// This file defines the criterion on which the solution will be based.
// It may also contain 8 coefficients: 4 for different constraint violation
// costs and 4 for different variable mobility costs.
class ParametersParser {
public:
explicit ParametersParser(const std::string& data_directory);
~ParametersParser();
std::string objective() const { return objective_; }
const std::vector<int>& constraint_weights() const {
return constraint_weights_;
}
const std::vector<int>& variable_weights() const { return variable_weights_; }
void Parse();
private:
const std::string filename_;
static const int constraint_coefficient_no_ = 4;
static const int variable_coefficient_no_ = 4;
static const int coefficient_no_ = 8;
std::string objective_;
std::vector<int> constraint_weights_;
std::vector<int> variable_weights_;
};
namespace {
int strtoint32(const std::string& word) {
int result;
CHECK(absl::SimpleAtoi(word, &result));
return result;
}
} // namespace
// Function that finds the disjoint sub-graphs of the graph of the instance.
void FindComponents(const std::vector<FapConstraint>& constraints,
const std::map<int, FapVariable>& variables,
const int maximum_variable_id,
absl::flat_hash_map<int, FapComponent>* components);
// Function that computes the impact of a constraint.
int EvaluateConstraintImpact(const std::map<int, FapVariable>& variables,
const int max_weight_cost,
const FapConstraint constraint);
// Function that parses an instance of frequency assignment problem.
void ParseInstance(const std::string& data_directory, bool find_components,
std::map<int, FapVariable>* variables,
std::vector<FapConstraint>* constraints,
std::string* objective, std::vector<int>* frequencies,
absl::flat_hash_map<int, FapComponent>* components);
void ParseFileByLines(const std::string& filename,
std::vector<std::string>* lines) {
CHECK(lines != nullptr);
std::string result;
CHECK_OK(file::GetContents(filename, &result, file::Defaults()));
*lines = absl::StrSplit(result, '\n', absl::SkipEmpty());
}
// VariableParser Implementation
VariableParser::VariableParser(const std::string& data_directory)
: filename_(data_directory + "/var.txt") {}
VariableParser::~VariableParser() {}
void VariableParser::Parse() {
std::vector<std::string> lines;
ParseFileByLines(filename_, &lines);
for (const std::string& line : lines) {
std::vector<std::string> tokens =
absl::StrSplit(line, ' ', absl::SkipEmpty());
if (tokens.empty()) {
continue;
}
CHECK_GE(tokens.size(), 2);
FapVariable variable;
variable.domain_index = strtoint32(tokens[1].c_str());
if (tokens.size() > 3) {
variable.initial_position = strtoint32(tokens[2].c_str());
variable.mobility_index = strtoint32(tokens[3].c_str());
}
gtl::InsertOrUpdate(&variables_, strtoint32(tokens[0].c_str()), variable);
}
}
// DomainParser Implementation
DomainParser::DomainParser(const std::string& data_directory)
: filename_(data_directory + "/dom.txt") {}
DomainParser::~DomainParser() {}
void DomainParser::Parse() {
std::vector<std::string> lines;
ParseFileByLines(filename_, &lines);
for (const std::string& line : lines) {
std::vector<std::string> tokens =
absl::StrSplit(line, ' ', absl::SkipEmpty());
if (tokens.empty()) {
continue;
}
CHECK_GE(tokens.size(), 2);
const int key = strtoint32(tokens[0].c_str());
std::vector<int> domain;
domain.clear();
for (int i = 2; i < tokens.size(); ++i) {
domain.push_back(strtoint32(tokens[i].c_str()));
}
if (!domain.empty()) {
gtl::InsertOrUpdate(&domains_, key, domain);
}
}
}
// ConstraintParser Implementation
ConstraintParser::ConstraintParser(const std::string& data_directory)
: filename_(data_directory + "/ctr.txt") {}
ConstraintParser::~ConstraintParser() {}
void ConstraintParser::Parse() {
std::vector<std::string> lines;
ParseFileByLines(filename_, &lines);
for (const std::string& line : lines) {
std::vector<std::string> tokens =
absl::StrSplit(line, ' ', absl::SkipEmpty());
if (tokens.empty()) {
continue;
}
CHECK_GE(tokens.size(), 5);
FapConstraint constraint;
constraint.variable1 = strtoint32(tokens[0].c_str());
constraint.variable2 = strtoint32(tokens[1].c_str());
constraint.type = tokens[2];
constraint.operation = tokens[3];
constraint.value = strtoint32(tokens[4].c_str());
if (tokens.size() > 5) {
constraint.weight_index = strtoint32(tokens[5].c_str());
}
constraints_.push_back(constraint);
}
}
// ParametersParser Implementation
const int ParametersParser::constraint_coefficient_no_;
const int ParametersParser::variable_coefficient_no_;
const int ParametersParser::coefficient_no_;
ParametersParser::ParametersParser(const std::string& data_directory)
: filename_(data_directory + "/cst.txt"),
objective_(""),
constraint_weights_(constraint_coefficient_no_, 0),
variable_weights_(variable_coefficient_no_, 0) {}
ParametersParser::~ParametersParser() {}
void ParametersParser::Parse() {
bool objective = true;
bool largest_token = false;
bool value_token = false;
bool number_token = false;
bool values_token = false;
bool coefficient = false;
std::vector<int> coefficients;
std::vector<std::string> lines;
ParseFileByLines(filename_, &lines);
for (const std::string& line : lines) {
if (objective) {
largest_token =
largest_token || (line.find("largest") != std::string::npos);
value_token = value_token || (line.find("value") != std::string::npos);
number_token = number_token || (line.find("number") != std::string::npos);
values_token = values_token || (line.find("values") != std::string::npos);
coefficient =
coefficient || (line.find("coefficient") != std::string::npos);
}
if (coefficient) {
CHECK_EQ(coefficient_no_,
constraint_coefficient_no_ + variable_coefficient_no_);
objective = false;
if (line.find("=") != std::string::npos) {
std::vector<std::string> tokens =
absl::StrSplit(line, ' ', absl::SkipEmpty());
CHECK_GE(tokens.size(), 3);
coefficients.push_back(strtoint32(tokens[2].c_str()));
}
}
}
if (coefficient) {
CHECK_EQ(coefficient_no_, coefficients.size());
for (int i = 0; i < coefficient_no_; i++) {
if (i < constraint_coefficient_no_) {
constraint_weights_[i] = coefficients[i];
} else {
variable_weights_[i - constraint_coefficient_no_] = coefficients[i];
}
}
}
if (largest_token && value_token) {
objective_ = "Minimize the largest assigned value.";
} else if (number_token && values_token) {
objective_ = "Minimize the number of assigned values.";
} else {
// Should not reach this point.
LOG(WARNING) << "Cannot read the objective of the instance.";
}
}
// TODO(user): Make FindComponents linear instead of quadratic.
void FindComponents(const std::vector<FapConstraint>& constraints,
const std::map<int, FapVariable>& variables,
const int maximum_variable_id,
absl::flat_hash_map<int, FapComponent>* components) {
std::vector<int> in_component(maximum_variable_id + 1, -1);
int constraint_index = 0;
for (const FapConstraint& constraint : constraints) {
const int variable_id1 = constraint.variable1;
const int variable_id2 = constraint.variable2;
const FapVariable& variable1 = gtl::FindOrDie(variables, variable_id1);
const FapVariable& variable2 = gtl::FindOrDie(variables, variable_id2);
CHECK_LT(variable_id1, in_component.size());
CHECK_LT(variable_id2, in_component.size());
if (in_component[variable_id1] < 0 && in_component[variable_id2] < 0) {
// None of the variables belong to an existing component.
// Create a new one.
FapComponent component;
const int component_index = constraint_index;
gtl::InsertOrUpdate(&(component.variables), variable_id1, variable1);
gtl::InsertOrUpdate(&(component.variables), variable_id2, variable2);
in_component[variable_id1] = component_index;
in_component[variable_id2] = component_index;
component.constraints.push_back(constraint);
gtl::InsertOrUpdate(components, component_index, component);
} else if (in_component[variable_id1] >= 0 &&
in_component[variable_id2] < 0) {
// If variable1 belongs to an existing component, variable2 should
// also be included in the same component.
const int component_index = in_component[variable_id1];
CHECK(gtl::ContainsKey(*components, component_index));
gtl::InsertOrUpdate(&((*components)[component_index].variables),
variable_id2, variable2);
in_component[variable_id2] = component_index;
(*components)[component_index].constraints.push_back(constraint);
} else if (in_component[variable_id1] < 0 &&
in_component[variable_id2] >= 0) {
// If variable2 belongs to an existing component, variable1 should
// also be included in the same component.
const int component_index = in_component[variable_id2];
CHECK(gtl::ContainsKey(*components, component_index));
gtl::InsertOrUpdate(&((*components)[component_index].variables),
variable_id1, variable1);
in_component[variable_id1] = component_index;
(*components)[component_index].constraints.push_back(constraint);
} else {
// The current constraint connects two different components.
const int component_index1 = in_component[variable_id1];
const int component_index2 = in_component[variable_id2];
const int min_component_index =
std::min(component_index1, component_index2);
const int max_component_index =
std::max(component_index1, component_index2);
CHECK(gtl::ContainsKey(*components, min_component_index));
CHECK(gtl::ContainsKey(*components, max_component_index));
if (min_component_index != max_component_index) {
// Update the component_index of maximum indexed component's variables.
for (const auto& variable :
(*components)[max_component_index].variables) {
int variable_id = variable.first;
in_component[variable_id] = min_component_index;
}
// Insert all the variables of the maximum indexed component to the
// variables of the minimum indexed component.
((*components)[min_component_index])
.variables.insert(
((*components)[max_component_index]).variables.begin(),
((*components)[max_component_index]).variables.end());
// Insert all the constraints of the maximum indexed component to the
// constraints of the minimum indexed component.
((*components)[min_component_index])
.constraints.insert(
((*components)[min_component_index]).constraints.end(),
((*components)[max_component_index]).constraints.begin(),
((*components)[max_component_index]).constraints.end());
(*components)[min_component_index].constraints.push_back(constraint);
// Delete the maximum indexed component from the components set.
components->erase(max_component_index);
} else {
// Both variables belong to the same component, just add the constraint.
(*components)[min_component_index].constraints.push_back(constraint);
}
}
constraint_index++;
}
}
int EvaluateConstraintImpact(const std::map<int, FapVariable>& variables,
const int max_weight_cost,
const FapConstraint constraint) {
const FapVariable& variable1 =
gtl::FindOrDie(variables, constraint.variable1);
const FapVariable& variable2 =
gtl::FindOrDie(variables, constraint.variable2);
const int degree1 = variable1.degree;
const int degree2 = variable2.degree;
const int max_degree = std::max(degree1, degree2);
const int min_degree = std::min(degree1, degree2);
const int operator_impact =
constraint.operation == "=" ? max_degree : min_degree;
const int kHardnessBias = 10;
int hardness_impact = 0;
if (constraint.hard) {
hardness_impact = max_weight_cost > 0 ? kHardnessBias * max_weight_cost : 0;
} else {
hardness_impact = constraint.weight_cost;
}
return max_degree + min_degree + operator_impact + hardness_impact;
}
void ParseInstance(const std::string& data_directory, bool find_components,
std::map<int, FapVariable>* variables,
std::vector<FapConstraint>* constraints,
std::string* objective, std::vector<int>* frequencies,
absl::flat_hash_map<int, FapComponent>* components) {
CHECK(variables != nullptr);
CHECK(constraints != nullptr);
CHECK(objective != nullptr);
CHECK(frequencies != nullptr);
// Parse the data files.
VariableParser var(data_directory);
var.Parse();
*variables = var.variables();
const int maximum_variable_id = variables->rbegin()->first;
ConstraintParser ctr(data_directory);
ctr.Parse();
*constraints = ctr.constraints();
DomainParser dom(data_directory);
dom.Parse();
ParametersParser cst(data_directory);
cst.Parse();
const int maximum_weight_cost = *std::max_element(
(cst.constraint_weights()).begin(), (cst.constraint_weights()).end());
// Make the variables of the instance.
for (auto& it : *variables) {
it.second.domain = gtl::FindOrDie(dom.domains(), it.second.domain_index);
it.second.domain_size = it.second.domain.size();
if ((it.second.mobility_index == -1) || (it.second.mobility_index == 0)) {
it.second.mobility_cost = -1;
if (it.second.initial_position != -1) {
it.second.hard = true;
}
} else {
it.second.mobility_cost =
(cst.variable_weights())[it.second.mobility_index - 1];
}
}
// Make the constraints of the instance.
for (FapConstraint& ct : *constraints) {
if ((ct.weight_index == -1) || (ct.weight_index == 0)) {
ct.weight_cost = -1;
ct.hard = true;
} else {
ct.weight_cost = (cst.constraint_weights())[ct.weight_index - 1];
ct.hard = false;
}
++((*variables)[ct.variable1]).degree;
++((*variables)[ct.variable2]).degree;
}
// Make the available frequencies of the instance.
*frequencies = gtl::FindOrDie(dom.domains(), 0);
// Make the objective of the instance.
*objective = cst.objective();
if (find_components) {
CHECK(components != nullptr);
FindComponents(*constraints, *variables, maximum_variable_id, components);
// Evaluate each components's constraints impacts.
for (auto& component : *components) {
for (auto& constraint : component.second.constraints) {
constraint.impact = EvaluateConstraintImpact(
*variables, maximum_weight_cost, constraint);
}
}
} else {
for (FapConstraint& constraint : *constraints) {
constraint.impact =
EvaluateConstraintImpact(*variables, maximum_weight_cost, constraint);
}
}
}
} // namespace operations_research
#endif // OR_TOOLS_EXAMPLES_FAP_PARSER_H_