forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
jobshop_sat.cc
393 lines (349 loc) · 14.8 KB
/
jobshop_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cmath>
#include <vector>
#include "absl/strings/match.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/wrappers.pb.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/data/jobshop_scheduling.pb.h"
#include "ortools/data/jobshop_scheduling_parser.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/model.h"
ABSL_FLAG(std::string, input, "", "Jobshop data file name.");
ABSL_FLAG(std::string, params, "", "Sat parameters in text proto format.");
ABSL_FLAG(bool, use_optional_variables, true,
"Whether we use optional variables for bounds of an optional "
"interval or not.");
ABSL_FLAG(bool, display_model, false, "Display jobshop proto before solving.");
ABSL_FLAG(bool, display_sat_model, false, "Display sat proto before solving.");
using operations_research::data::jssp::Job;
using operations_research::data::jssp::JobPrecedence;
using operations_research::data::jssp::JsspInputProblem;
using operations_research::data::jssp::Machine;
using operations_research::data::jssp::Task;
using operations_research::data::jssp::TransitionTimeMatrix;
namespace operations_research {
namespace sat {
// Compute a valid horizon from a problem.
int64 ComputeHorizon(const JsspInputProblem& problem) {
int64 sum_of_durations = 0;
int64 max_latest_end = 0;
int64 max_earliest_start = 0;
for (const Job& job : problem.jobs()) {
if (job.has_latest_end()) {
max_latest_end = std::max(max_latest_end, job.latest_end().value());
} else {
max_latest_end = kint64max;
}
if (job.has_earliest_start()) {
max_earliest_start =
std::max(max_earliest_start, job.earliest_start().value());
}
for (const Task& task : job.tasks()) {
int64 max_duration = 0;
for (int64 d : task.duration()) {
max_duration = std::max(max_duration, d);
}
sum_of_durations += max_duration;
}
}
const int num_jobs = problem.jobs_size();
int64 sum_of_transitions = 0;
for (const Machine& machine : problem.machines()) {
if (!machine.has_transition_time_matrix()) continue;
const TransitionTimeMatrix& matrix = machine.transition_time_matrix();
for (int i = 0; i < num_jobs; ++i) {
int64 max_transition = 0;
for (int j = 0; j < num_jobs; ++j) {
max_transition =
std::max(max_transition, matrix.transition_time(i * num_jobs + j));
}
sum_of_transitions += max_transition;
}
}
return std::min(max_latest_end,
sum_of_durations + sum_of_transitions + max_earliest_start);
// TODO(user): Uses transitions.
}
// Solve a JobShop scheduling problem using SAT.
void Solve(const JsspInputProblem& problem) {
if (absl::GetFlag(FLAGS_display_model)) {
LOG(INFO) << problem.DebugString();
}
CpModelBuilder cp_model;
const int num_jobs = problem.jobs_size();
const int num_machines = problem.machines_size();
const int64 horizon = ComputeHorizon(problem);
std::vector<int> starts;
std::vector<int> ends;
const Domain all_horizon(0, horizon);
const IntVar makespan = cp_model.NewIntVar(all_horizon);
std::vector<std::vector<IntervalVar> > machine_to_intervals(num_machines);
std::vector<std::vector<int> > machine_to_jobs(num_machines);
std::vector<std::vector<IntVar> > machine_to_starts(num_machines);
std::vector<std::vector<IntVar> > machine_to_ends(num_machines);
std::vector<std::vector<BoolVar> > machine_to_presences(num_machines);
std::vector<IntVar> job_starts(num_jobs);
std::vector<IntVar> job_ends(num_jobs);
std::vector<IntVar> task_starts;
int64 objective_offset = 0;
std::vector<IntVar> objective_vars;
std::vector<int64> objective_coeffs;
for (int j = 0; j < num_jobs; ++j) {
const Job& job = problem.jobs(j);
IntVar previous_end;
const int64 hard_start =
job.has_earliest_start() ? job.earliest_start().value() : 0L;
const int64 hard_end =
job.has_latest_end() ? job.latest_end().value() : horizon;
for (int t = 0; t < job.tasks_size(); ++t) {
const Task& task = job.tasks(t);
const int num_alternatives = task.machine_size();
CHECK_EQ(num_alternatives, task.duration_size());
// Add the "main" task interval. It will englobe all the alternative ones
// if there is many, or be a normal task otherwise.
int64 min_duration = task.duration(0);
int64 max_duration = task.duration(0);
for (int i = 1; i < num_alternatives; ++i) {
min_duration = std::min(min_duration, task.duration(i));
max_duration = std::max(max_duration, task.duration(i));
}
const IntVar start = cp_model.NewIntVar(Domain(hard_start, hard_end));
const IntVar duration =
cp_model.NewIntVar(Domain(min_duration, max_duration));
const IntVar end = cp_model.NewIntVar(Domain(hard_start, hard_end));
const IntervalVar interval =
cp_model.NewIntervalVar(start, duration, end);
// Store starts and ends of jobs for precedences.
if (t == 0) {
job_starts[j] = start;
}
if (t == job.tasks_size() - 1) {
job_ends[j] = end;
}
task_starts.push_back(start);
// Chain the task belonging to the same job.
if (t > 0) {
cp_model.AddLessOrEqual(previous_end, start);
}
previous_end = end;
if (num_alternatives == 1) {
const int m = task.machine(0);
machine_to_intervals[m].push_back(interval);
machine_to_jobs[m].push_back(j);
machine_to_starts[m].push_back(start);
machine_to_ends[m].push_back(end);
machine_to_presences[m].push_back(cp_model.TrueVar());
if (task.cost_size() > 0) {
objective_offset += task.cost(0);
}
} else {
std::vector<BoolVar> presences;
for (int a = 0; a < num_alternatives; ++a) {
const BoolVar presence = cp_model.NewBoolVar();
const IntVar local_start =
absl::GetFlag(FLAGS_use_optional_variables)
? cp_model.NewIntVar(Domain(hard_start, hard_end))
: start;
const IntVar local_duration = cp_model.NewConstant(task.duration(a));
const IntVar local_end =
absl::GetFlag(FLAGS_use_optional_variables)
? cp_model.NewIntVar(Domain(hard_start, hard_end))
: end;
const IntervalVar local_interval = cp_model.NewOptionalIntervalVar(
local_start, local_duration, local_end, presence);
// Link local and global variables.
if (absl::GetFlag(FLAGS_use_optional_variables)) {
cp_model.AddEquality(start, local_start).OnlyEnforceIf(presence);
cp_model.AddEquality(end, local_end).OnlyEnforceIf(presence);
// TODO(user): Experiment with the following implication.
cp_model.AddEquality(duration, local_duration)
.OnlyEnforceIf(presence);
}
// Record relevant variables for later use.
const int m = task.machine(a);
machine_to_intervals[m].push_back(local_interval);
machine_to_jobs[m].push_back(j);
machine_to_starts[m].push_back(local_start);
machine_to_ends[m].push_back(local_end);
machine_to_presences[m].push_back(presence);
// Add cost if present.
if (task.cost_size() > 0) {
objective_vars.push_back(presence);
objective_coeffs.push_back(task.cost(a));
}
// Collect presence variables.
presences.push_back(presence);
}
// Exactly one alternative interval is present.
cp_model.AddEquality(LinearExpr::BooleanSum(presences), 1);
}
}
// The makespan will be greater than the end of each job.
if (problem.makespan_cost_per_time_unit() != 0L) {
cp_model.AddLessOrEqual(previous_end, makespan);
}
const int64 lateness_penalty = job.lateness_cost_per_time_unit();
// Lateness cost.
if (lateness_penalty != 0L) {
const int64 due_date = job.late_due_date();
if (due_date == 0) {
objective_vars.push_back(previous_end);
objective_coeffs.push_back(lateness_penalty);
} else {
const IntVar shifted_var =
cp_model.NewIntVar(Domain(-due_date, horizon - due_date));
cp_model.AddEquality(shifted_var,
LinearExpr(previous_end).AddConstant(-due_date));
const IntVar lateness_var = cp_model.NewIntVar(all_horizon);
cp_model.AddMaxEquality(lateness_var,
{cp_model.NewConstant(0), shifted_var});
objective_vars.push_back(lateness_var);
objective_coeffs.push_back(lateness_penalty);
}
}
const int64 earliness_penalty = job.earliness_cost_per_time_unit();
// Earliness cost.
if (earliness_penalty != 0L) {
const int64 due_date = job.early_due_date();
if (due_date > 0) {
const IntVar shifted_var =
cp_model.NewIntVar(Domain(due_date - horizon, due_date));
cp_model.AddEquality(LinearExpr::Sum({shifted_var, previous_end}),
due_date);
const IntVar earliness_var = cp_model.NewIntVar(all_horizon);
cp_model.AddMaxEquality(earliness_var,
{cp_model.NewConstant(0), shifted_var});
objective_vars.push_back(earliness_var);
objective_coeffs.push_back(earliness_penalty);
}
}
}
// Add one no_overlap constraint per machine.
for (int m = 0; m < num_machines; ++m) {
cp_model.AddNoOverlap(machine_to_intervals[m]);
if (problem.machines(m).has_transition_time_matrix()) {
const TransitionTimeMatrix& transitions =
problem.machines(m).transition_time_matrix();
const int num_intervals = machine_to_intervals[m].size();
// Create circuit constraint on a machine.
// Node 0 and num_intervals + 1 are source and sink.
CircuitConstraint circuit = cp_model.AddCircuitConstraint();
for (int i = 0; i < num_intervals; ++i) {
const int job_i = machine_to_jobs[m][i];
// Source to nodes.
circuit.AddArc(0, i + 1, cp_model.NewBoolVar());
// Node to sink.
circuit.AddArc(i + 1, 0, cp_model.NewBoolVar());
// Node to node.
for (int j = 0; j < num_intervals; ++j) {
if (i == j) {
circuit.AddArc(i + 1, i + 1, Not(machine_to_presences[m][i]));
} else {
const int job_j = machine_to_jobs[m][j];
const int64 transition =
transitions.transition_time(job_i * num_jobs + job_j);
const BoolVar lit = cp_model.NewBoolVar();
const IntVar start = machine_to_starts[m][j];
const IntVar end = machine_to_ends[m][i];
circuit.AddArc(i + 1, j + 1, lit);
// Push the new start with an extra transition.
cp_model
.AddLessOrEqual(LinearExpr(end).AddConstant(transition), start)
.OnlyEnforceIf(lit);
}
}
}
}
}
// Add job precedences.
for (const JobPrecedence& precedence : problem.precedences()) {
const IntVar start = job_starts[precedence.second_job_index()];
const IntVar end = job_ends[precedence.first_job_index()];
cp_model.AddLessOrEqual(LinearExpr(end).AddConstant(precedence.min_delay()),
start);
}
// Add objective.
if (problem.makespan_cost_per_time_unit() != 0L) {
objective_coeffs.push_back(problem.makespan_cost_per_time_unit());
objective_vars.push_back(makespan);
}
cp_model.Minimize(LinearExpr::ScalProd(objective_vars, objective_coeffs)
.AddConstant(objective_offset));
if (problem.has_scaling_factor()) {
cp_model.ScaleObjectiveBy(problem.scaling_factor().value());
}
// Decision strategy.
cp_model.AddDecisionStrategy(task_starts,
DecisionStrategyProto::CHOOSE_LOWEST_MIN,
DecisionStrategyProto::SELECT_MIN_VALUE);
LOG(INFO) << "#machines:" << num_machines;
LOG(INFO) << "#jobs:" << num_jobs;
LOG(INFO) << "horizon:" << horizon;
if (absl::GetFlag(FLAGS_display_sat_model)) {
LOG(INFO) << cp_model.Proto().DebugString();
}
LOG(INFO) << CpModelStats(cp_model.Proto());
Model model;
model.Add(NewSatParameters(absl::GetFlag(FLAGS_params)));
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << CpSolverResponseStats(response);
// Abort if we don't have any solution.
if (response.status() != CpSolverStatus::OPTIMAL &&
response.status() != CpSolverStatus::FEASIBLE)
return;
// Check cost, recompute it from scratch.
int64 final_cost = 0;
if (problem.makespan_cost_per_time_unit() != 0) {
int64 makespan = 0;
for (IntVar v : job_ends) {
makespan = std::max(makespan, SolutionIntegerValue(response, v));
}
final_cost += makespan * problem.makespan_cost_per_time_unit();
}
for (int i = 0; i < job_ends.size(); ++i) {
const int64 early_due_date = problem.jobs(i).early_due_date();
const int64 late_due_date = problem.jobs(i).late_due_date();
const int64 early_penalty = problem.jobs(i).earliness_cost_per_time_unit();
const int64 late_penalty = problem.jobs(i).lateness_cost_per_time_unit();
const int64 end = SolutionIntegerValue(response, job_ends[i]);
if (end < early_due_date && early_penalty != 0) {
final_cost += (early_due_date - end) * early_penalty;
}
if (end > late_due_date && late_penalty != 0) {
final_cost += (end - late_due_date) * late_penalty;
}
}
// TODO(user): Support alternative cost in check.
const double tolerance = 1e-6;
CHECK_GE(response.objective_value(), final_cost - tolerance);
CHECK_LE(response.objective_value(), final_cost + tolerance);
}
} // namespace sat
} // namespace operations_research
int main(int argc, char** argv) {
absl::SetFlag(&FLAGS_logtostderr, true);
absl::ParseCommandLine(argc, argv);
if (absl::GetFlag(FLAGS_input).empty()) {
LOG(FATAL) << "Please supply a data file with --input=";
}
operations_research::data::jssp::JsspParser parser;
CHECK(parser.ParseFile(absl::GetFlag(FLAGS_input)));
operations_research::sat::Solve(parser.problem());
return EXIT_SUCCESS;
}