forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
uncapacitated_facility_location.cc
239 lines (224 loc) · 9.46 KB
/
uncapacitated_facility_location.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Copyright 2020 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Uncapacitated Facility Location Problem.
// A description of the problem can be found here:
// https://en.wikipedia.org/wiki/Facility_location_problem.
// The variant which is tackled by this model does not consider capacities
// for facilities. Moreover, all cost are based on euclidean distance factors,
// i.e. the problem we really solve is a Metric Facility Location. For the
// sake of simplicity, facilities and demands are randomly located. Distances
// are assumed to be in meters and times in seconds.
#include <cstdio>
#include <vector>
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/linear_solver/linear_solver.h"
ABSL_FLAG(int, verbose, 0, "Verbosity level.");
ABSL_FLAG(int, facilities, 20, "Candidate facilities to consider.");
ABSL_FLAG(int, clients, 100, "Clients to serve.");
ABSL_FLAG(double, fix_cost, 5000, "Cost of opening a facility.");
namespace operations_research {
typedef struct {
double x{0};
double y{0};
} Location;
typedef struct {
int f{-1};
int c{-1};
MPVariable* x{nullptr};
} Edge;
static double Distance(const Location& src, const Location& dst) {
return sqrt((src.x - dst.x) * (src.x - dst.x) +
(src.y - dst.y) * (src.y - dst.y));
}
static void UncapacitatedFacilityLocation(
int32 facilities, int32 clients, double fix_cost,
MPSolver::OptimizationProblemType optimization_problem_type) {
LOG(INFO) << "Starting " << __func__;
// Local Constants
const int32 kXMax = 1000;
const int32 kYMax = 1000;
const double kMaxDistance = 6 * sqrt((kXMax * kYMax)) / facilities;
const int kStrLen = 1024;
// char buffer for names
char name_buffer[kStrLen + 1];
name_buffer[kStrLen] = '\0';
LOG(INFO) << "Facilities/Clients/Fix cost/MaxDist: " << facilities << "/"
<< clients << "/" << fix_cost << "/" << kMaxDistance;
// Setting up facilities and demand points
MTRandom randomizer(/*fixed seed*/ 20191029);
std::vector<Location> facility(facilities);
std::vector<Location> client(clients);
for (int i = 0; i < facilities; ++i) {
facility[i].x = randomizer.Uniform(kXMax + 1);
facility[i].y = randomizer.Uniform(kYMax + 1);
}
for (int i = 0; i < clients; ++i) {
client[i].x = randomizer.Uniform(kXMax + 1);
client[i].y = randomizer.Uniform(kYMax + 1);
}
// Setup uncapacitated facility location model:
// Min sum( c_f * x_f : f in Facilities) + sum(x_{f,c} * x_{f,c} : {f,c} in E)
// s.t. (1) sum(x_{f,c} : f in Facilities) >= 1 forall c in Clients
// (2) x_f - x_{f,c} >= 0 forall {f,c} in E
// (3) x_f in {0,1} forall f in Facilities
//
// We consider E as the pairs {f,c} in Facilities x Clients such that
// Distance(f,c) <= kMaxDistance
MPSolver solver("UncapacitatedFacilityLocation", optimization_problem_type);
const double infinity = solver.infinity();
MPObjective* objective = solver.MutableObjective();
objective->SetMinimization();
// Add binary facilities variables
std::vector<MPVariable*> xf{};
for (int f = 0; f < facilities; ++f) {
snprintf(name_buffer, kStrLen, "x[%d](%g,%g)", f, facility[f].x,
facility[f].y);
MPVariable* x = solver.MakeBoolVar(name_buffer);
xf.push_back(x);
objective->SetCoefficient(x, fix_cost);
}
// Build edge variables
std::vector<Edge> edges;
for (int c = 0; c < clients; ++c) {
snprintf(name_buffer, kStrLen, "R-Client[%d](%g,%g)", c, client[c].x,
client[c].y);
MPConstraint* client_constraint =
solver.MakeRowConstraint(/* lb */ 1, /* ub */ infinity, name_buffer);
for (int f = 0; f < facilities; ++f) {
double distance = Distance(facility[f], client[c]);
if (distance > kMaxDistance) continue;
Edge edge{};
snprintf(name_buffer, kStrLen, "x[%d,%d]", f, c);
edge.x = solver.MakeNumVar(/* lb */ 0, /*ub */ 1, name_buffer);
edge.f = f;
edge.c = c;
edges.push_back(edge);
objective->SetCoefficient(edge.x, distance);
// coefficient for constraint (1)
client_constraint->SetCoefficient(edge.x, 1);
// add constraint (2)
snprintf(name_buffer, kStrLen, "R-Edge[%d,%d]", f, c);
MPConstraint* edge_constraint =
solver.MakeRowConstraint(/* lb */ 0, /* ub */ infinity, name_buffer);
edge_constraint->SetCoefficient(edge.x, -1);
edge_constraint->SetCoefficient(xf[f], 1);
}
} // End adding all edge variables
LOG(INFO) << "Number of variables = " << solver.NumVariables();
LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
// display on screen LP if small enough
if (clients <= 10 && facilities <= 10) {
std::string lp_string{};
solver.ExportModelAsLpFormat(/* obfuscate */ false, &lp_string);
std::cout << "LP-Model:\n" << lp_string << std::endl;
}
// Set options and solve
if (optimization_problem_type != MPSolver::SCIP_MIXED_INTEGER_PROGRAMMING)
solver.SetNumThreads(8);
solver.EnableOutput();
const MPSolver::ResultStatus result_status = solver.Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution!";
} else {
LOG(INFO) << "Optimal objective value = " << objective->Value();
if (absl::GetFlag(FLAGS_verbose)) {
std::vector<std::vector<int> > solution(facilities);
for (auto& edge : edges) {
if (edge.x->solution_value() < 0.5) continue;
solution[edge.f].push_back(edge.c);
}
std::cout << "\tSolution:\n";
for (int f = 0; f < facilities; ++f) {
if (solution[f].size() < 1) continue;
assert(xf[f]->solution_value() > 0.5);
snprintf(name_buffer, kStrLen, "\t Facility[%d](%g,%g):", f,
facility[f].x, facility[f].y);
std::cout << name_buffer;
int i = 1;
for (auto c : solution[f]) {
snprintf(name_buffer, kStrLen, " Client[%d](%g,%g)", c, client[c].x,
client[c].y);
if (i++ >= 5) {
std::cout << "\n\t\t";
i = 1;
}
std::cout << name_buffer;
}
std::cout << "\n";
}
}
std::cout << "\n";
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << solver.DurationSinceConstruction()
<< " milliseconds";
LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations";
LOG(INFO) << "Problem solved in " << solver.nodes()
<< " branch-and-bound nodes";
}
}
void RunAllExamples(int32 facilities, int32 clients, double fix_cost) {
#if defined(USE_CBC)
LOG(INFO) << "---- Integer programming example with CBC ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::CBC_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_GLPK)
LOG(INFO) << "---- Integer programming example with GLPK ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::GLPK_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_SCIP)
LOG(INFO) << "---- Integer programming example with SCIP ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::SCIP_MIXED_INTEGER_PROGRAMMING);
#endif
#if defined(USE_GUROBI)
LOG(INFO) << "---- Integer programming example with Gurobi ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::GUROBI_MIXED_INTEGER_PROGRAMMING);
#endif // USE_GUROBI
#if defined(USE_CPLEX)
LOG(INFO) << "---- Integer programming example with CPLEX ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::CPLEX_MIXED_INTEGER_PROGRAMMING);
#endif // USE_CPLEX
LOG(INFO) << "---- Integer programming example with CP-SAT ----";
UncapacitatedFacilityLocation(facilities, clients, fix_cost,
MPSolver::SAT_INTEGER_PROGRAMMING);
}
} // namespace operations_research
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
absl::SetProgramUsageMessage(
std::string("This program solve a (randomly generated)\n") +
std::string("Uncapacitated Facility Location Problem. Sample Usage:\n"));
absl::ParseCommandLine(argc, argv);
CHECK_LT(0, absl::GetFlag(FLAGS_facilities))
<< "Specify an instance size greater than 0.";
CHECK_LT(0, absl::GetFlag(FLAGS_clients))
<< "Specify a non-null client size.";
CHECK_LT(0, absl::GetFlag(FLAGS_fix_cost))
<< "Specify a non-null client size.";
absl::SetFlag(&FLAGS_logtostderr, 1);
operations_research::RunAllExamples(absl::GetFlag(FLAGS_facilities),
absl::GetFlag(FLAGS_clients),
absl::GetFlag(FLAGS_fix_cost));
return EXIT_SUCCESS;
}