forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
mip_var_array.cc
102 lines (91 loc) · 3.12 KB
/
mip_var_array.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
#include "ortools/linear_solver/linear_solver.h"
// [END import]
// [START program_part1]
namespace operations_research {
// [START data_model]
struct DataModel {
const std::vector<std::vector<double>> constraint_coeffs{
{5, 7, 9, 2, 1},
{18, 4, -9, 10, 12},
{4, 7, 3, 8, 5},
{5, 13, 16, 3, -7},
};
const std::vector<double> bounds{250, 285, 211, 315};
const std::vector<double> obj_coeffs{7, 8, 2, 9, 6};
const int num_vars = 5;
const int num_constraints = 4;
};
// [END data_model]
void MipVarArray() {
// [START data]
DataModel data;
// [END data]
// [END program_part1]
// [START solver]
// Create the mip solver with the SCIP backend.
MPSolver solver("mip_var_array", MPSolver::SCIP_MIXED_INTEGER_PROGRAMMING);
// [END solver]
// [START program_part2]
// [START variables]
const double infinity = solver.infinity();
// x[j] is an array of non-negative, integer variables.
std::vector<const MPVariable*> x(data.num_vars);
for (int j = 0; j < data.num_vars; ++j) {
x[j] = solver.MakeIntVar(0.0, infinity, "");
}
LOG(INFO) << "Number of variables = " << solver.NumVariables();
// [END variables]
// [START constraints]
// Create the constraints.
for (int i = 0; i < data.num_constraints; ++i) {
MPConstraint* constraint = solver.MakeRowConstraint(0, data.bounds[i], "");
for (int j = 0; j < data.num_vars; ++j) {
constraint->SetCoefficient(x[j], data.constraint_coeffs[i][j]);
}
}
LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
// [END constraints]
// [START objective]
// Create the objective function.
MPObjective* const objective = solver.MutableObjective();
for (int j = 0; j < data.num_vars; ++j) {
objective->SetCoefficient(x[j], data.obj_coeffs[j]);
}
objective->SetMaximization();
// [END objective]
// [START solve]
const MPSolver::ResultStatus result_status = solver.Solve();
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution.";
}
LOG(INFO) << "Solution:";
LOG(INFO) << "Optimal objective value = " << objective->Value();
for (int j = 0; j < data.num_vars; ++j) {
LOG(INFO) << "x[" << j << "] = " << x[j]->solution_value();
}
// [END print_solution]
}
} // namespace operations_research
int main(int argc, char** argv) {
operations_research::MipVarArray();
return EXIT_SUCCESS;
}
// [END program_part2]
// [END program]