forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 3
/
all_different.h
229 lines (197 loc) · 9.4 KB
/
all_different.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_ALL_DIFFERENT_H_
#define OR_TOOLS_SAT_ALL_DIFFERENT_H_
#include <functional>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/macros.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
namespace operations_research {
namespace sat {
// Enforces that the given tuple of variables takes different values. This fully
// encodes all the variables and simply enforces a <= 1 constraint on each
// possible values.
std::function<void(Model*)> AllDifferentBinary(
const std::vector<IntegerVariable>& vars);
// Enforces that the given tuple of variables takes different values.
// Same as AllDifferentBinary() but use a different propagator that only enforce
// the so called "bound consistency" on the variable domains.
//
// Compared to AllDifferentBinary() this doesn't require fully encoding the
// variables and it is also quite fast. Note that the propagation is different,
// this will not remove already taken values from inside a domain, but it will
// propagates more the domain bounds.
std::function<void(Model*)> AllDifferentOnBounds(
const std::vector<IntegerVariable>& vars);
// This constraint forces all variables to take different values. This is meant
// to be used as a complement to an alldifferent decomposition like
// AllDifferentBinary(): DO NOT USE WITHOUT ONE. Doing the filtering that the
// decomposition can do with an appropriate algorithm should be cheaper and
// yield more accurate explanations.
//
// It uses the matching algorithm described in Regin at AAAI1994:
// "A filtering algorithm for constraints of difference in CSPs".
//
// This will fully encode variables.
std::function<void(Model*)> AllDifferentAC(
const std::vector<IntegerVariable>& variables);
// Implementation of AllDifferentAC().
class AllDifferentConstraint : PropagatorInterface {
public:
AllDifferentConstraint(std::vector<IntegerVariable> variables,
IntegerEncoder* encoder, Trail* trail,
IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// MakeAugmentingPath() is a step in Ford-Fulkerson's augmenting path
// algorithm. It changes its current internal state (see vectors below)
// to assign a value to the start vertex using an augmenting path.
// If it is not possible, it keeps variable_to_value_[start] to -1 and returns
// false, otherwise it modifies the current assignment and returns true.
// It uses value/variable_visited to mark the nodes it visits during its
// search: one can use this information to generate an explanation of failure,
// or manipulate it to create what-if scenarios without modifying successor_.
bool MakeAugmentingPath(int start);
// Accessors to the cache of literals.
inline LiteralIndex VariableLiteralIndexOf(int x, int64 value);
inline bool VariableHasPossibleValue(int x, int64 value);
// This caches all literals of the fully encoded variables.
// Values of a given variable are 0-indexed using offsets variable_min_value_,
// the set of all values is globally offset using offset min_all_values_.
// TODO(user): compare this encoding to a sparser hash_map encoding.
const int num_variables_;
const std::vector<IntegerVariable> variables_;
int64 min_all_values_;
int64 num_all_values_;
std::vector<int64> variable_min_value_;
std::vector<int64> variable_max_value_;
std::vector<std::vector<LiteralIndex>> variable_literal_index_;
// Internal state of MakeAugmentingPath().
// value_to_variable_ and variable_to_value_ represent the current assignment;
// -1 means not assigned. Otherwise,
// variable_to_value_[var] = value <=> value_to_variable_[value] = var.
std::vector<std::vector<int>> successor_;
std::vector<bool> value_visited_;
std::vector<bool> variable_visited_;
std::vector<int> value_to_variable_;
std::vector<int> variable_to_value_;
std::vector<int> prev_matching_;
std::vector<int> visiting_;
std::vector<int> variable_visited_from_;
// Internal state of ComputeSCCs().
// Variable nodes are indexed by [0, num_variables_),
// value nodes by [num_variables_, num_variables_ + num_all_values_),
// and a dummy node with index num_variables_ + num_all_values_ is added.
// The graph passed to ComputeSCCs() is the residual of the possible graph
// by the current matching, i.e. its arcs are:
// _ (var, val) if val \in dom(var) and var not matched to val,
// _ (val, var) if var matched to val,
// _ (val, dummy) if val not matched to any variable,
// _ (dummy, var) for all variables.
// In the original paper, forbidden arcs are identified by detecting that they
// are not in any alternating cycle or alternating path starting at a
// free vertex. Adding the dummy node allows to factor the alternating path
// part in the alternating cycle, and filter with only the SCC decomposition.
// When num_variables_ == num_all_values_, the dummy node is useless,
// we add it anyway to simplify the code.
std::vector<std::vector<int>> residual_graph_successors_;
std::vector<int> component_number_;
Trail* trail_;
IntegerTrail* integer_trail_;
};
// Implement the all different bound consistent propagator with explanation.
// That is, given n variables that must be all different, this propagates the
// bounds of each variables as much as possible. The key is to detect the so
// called Hall interval which are interval of size k that contains the domain
// of k variables. Because all the variables must take different values, we can
// deduce that the domain of the other variables cannot contains such Hall
// interval.
//
// We use a "fast" O(n log n) algorithm.
//
// TODO(user): It might be difficult to find something faster than what is
// implemented here. Some related reference:
// https://cs.uwaterloo.ca/~vanbeek/Publications/ijcai03_TR.pdf
class AllDifferentBoundsPropagator : public PropagatorInterface {
public:
AllDifferentBoundsPropagator(const std::vector<IntegerVariable>& vars,
IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// We locally cache the lb/ub for faster sorting and to guarantee some
// invariant when we push bounds.
struct VarValue {
IntegerVariable var;
IntegerValue lb;
IntegerValue ub;
};
// Fills integer_reason_ with the reason why we have the given hall interval.
void FillHallReason(IntegerValue hall_lb, IntegerValue hall_ub);
// Do half the job of Propagate(). This will split the variable into
// independent subset, and call PropagateLowerBoundsInternal() on each of
// them.
bool PropagateLowerBounds();
bool PropagateLowerBoundsInternal(IntegerValue min_lb,
absl::Span<VarValue> vars);
// Internally, we will maintain a set of non-consecutive integer intervals of
// the form [start, end]. Each point (i.e. IntegerValue) of such interval will
// be associated to an unique variable and via an union-find algorithm point
// to its start. The end only make sense for representative.
//
// TODO(user): Because we don't use rank, we have a worst case complexity of
// O(n log n). We could try a normal Union-find data structure, but then we
// also have to maintain a start vector.
//
// Note that during the execution of the algorithm we start from empty
// intervals and finish with a set of points of size num_vars.
//
// The list of all points are maintained in the dense vectors index_to_*_
// where we have remapped values to indices (with GetIndex()) to make sure it
// always fall into the correct range.
int FindStartIndexAndCompressPath(int index);
int GetIndex(IntegerValue value) const {
DCHECK_GE(value, base_);
DCHECK_LT(value - base_, index_to_start_index_.size());
return (value - base_).value();
}
IntegerValue GetValue(int index) const { return base_ + IntegerValue(index); }
bool PointIsPresent(int index) const {
return index_to_var_[index] != kNoIntegerVariable;
}
IntegerTrail* integer_trail_;
// These vector will be either sorted by lb or by ub.
std::vector<VarValue> vars_;
std::vector<VarValue> negated_vars_;
// The list of Hall intervalls detected so far, sorted.
std::vector<IntegerValue> hall_starts_;
std::vector<IntegerValue> hall_ends_;
// Non-consecutive intervals related data-structures.
IntegerValue base_;
std::vector<int> indices_to_clear_;
std::vector<int> index_to_start_index_;
std::vector<int> index_to_end_index_;
std::vector<IntegerVariable> index_to_var_;
// Temporary integer reason.
std::vector<IntegerLiteral> integer_reason_;
DISALLOW_COPY_AND_ASSIGN(AllDifferentBoundsPropagator);
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_ALL_DIFFERENT_H_