-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_all_first.m
577 lines (428 loc) · 21 KB
/
run_all_first.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
function [] = run_all_first(subject)
% This script will perform integrated pre-processing and ROI time series
% extraction for a single subject. It can easily be converted into a
% function to loop over subjects. It can be divided into two
% streams--one for T1 and the other for EPI processing.
%
% Only some basic inputs need to be defined at the beginning of the script.
%
% The nuisance regression is largely based on a variant of the CompCor
% procedure first described by Behzadi et al. (2007) NeuroImage, which was
% shown to provide noise correction to fMRI data comparable to RETROICOR. A
% subsequent variant, described by Muschelli et al. (2014) NeuroImage, was
% suggested to also offer good correction for head motion, with no
% additional gains provided by scrubbing.
%
% NB: The latest version of FSL, which allows the '-w' option in fslmeants,
% should be installed
%
% 1 - Segment T1 (output native and normalized tissue masks)
% 2 - Slice-timing correction (optional)
% 3 - Spatially normalize T1 to MNI template
% 4 - EPI Realignment
% 5 - Co-registration of realigned images to T1 (without resampling)
% 6 - Application of T1-spatial normalization parameters to coregistered
% epi (Note: bounding box has been changed to output data to 91x109x91)
% 7 - Generate WM and CSF masks and optional mask erosion for CompCor
% 8 - Linear detrending of realigned EPI time series (uses REST)
% 9 - Voxel-wise time series extraction (uses fslmeants) from nuisance
% masks
% 10 - CompCor analysis of wm/csf voxel time course to generate noise
% regressors
% 11 - Nuisance regression of realigned detrended EPI time courses against CompCor
% regressors generated in step 10 + 6 head motion parameters and their
% derivatives (uses fsl_regfilt)
% 12 - Despike with Patel's Brain WaveLet toolbox (optional - not working yet...)
% 13 - Bandpass filtering of cleaned data (uses REST)
% 14 - Spatially smooth filtered EPIs (optional)
% 15 - Extract ROI time series (uses fslmeants). Time series will be
% weighted by GM probability
% 16 - Print diagnostic reports
%
% *************************************************************************
% NB: You must first change line 73 in spm_defaults.m to:
% defaults.mask.thresh = -Inf
% for first level analysis to run
% *************************************************************************
%
%
% Linden Parkes, June 2015.
%
%==========================================================================
% clear all;
% subject = '1008.2.48.9';
cnt = 1;
%==========================================================================
% Add paths - edit this section
%==========================================================================
% this section should add paths to all revevent scipts and toolboxes, which
% include: SPM, REST, marsbar and the current set of scripts
% where spm is
spmdir = '/media/lindenmp/WD_2TB/Dropbox/scripts/matlab/spm8/';
addpath(genpath(spmdir));
% where REST is
addpath(genpath('~/Dropbox/scripts/matlab/REST_V1.8_130615/'))
% directory where marsbar is. Path will be added and removed as required in
% script below to avoid conflict with spm routines
% marsbar_dir = '~/Dropbox/scripts/matlab/spm8/toolbox/marsbar/';
% where the pre-processing scripts are
addpath(genpath('~/Dropbox/scripts/projects/OCDPG/rest_prepro/'))
% set FSL environments
fsldir = '/usr/share/fsl/5.0/bin/'; % directory where fsl is
setenv('FSLDIR',fsldir(1:end-4));
setenv('FSLOUTPUTTYPE','NIFTI');
% setup Wavelet toolbox
addpath('~/Dropbox/scripts/matlab/BrainWavelet')
setup
%==========================================================================
% Basic inputs - edit this section
%==========================================================================
% directory where raw .nii files are.
rawdir = ['/media/lindenmp/SG8_4TB/Research_Projects/OCDPG/data/',subject,'/rfMRI/']; % where the unprocessed epi 4d files are
% file name of EPI 4d file
epifile = dir([rawdir,'epi.nii']);
epi4d = epifile(1).name;
% length of time series (no. vols)
N = 189;
% Repetition time of acquistion in secs
TR = 2.5;
% Desired voxel dimension (in mm) of analysis after spatial normalization
voxdim = 2;
% Do you want to run slice-timing correction? 1 = yes; 0 = no.
slicetime = 1;
% Number of slices in epi volumes.
% Set to [] if slicetime = 0.
nslices = 44;
% Vector defining acquisition order of EPI slices (necessary for slice-timing correction.
% See help of slicetime_epis.m for guidance on how to define)
% Set to [] if slicetime = 0.
% order = [1:1:nslices]; % ascending
order = [1:2:nslices-1,2:2:nslices]; % interleaved
% Reference slice for slice timing acquisition. See help of slicetime_epis.m
% for guidance on how to define.
% Set to [] if slicetime = 0.
refslice = nslices-1;
% Low-pass cut-off for bandpass filter in Hz (e.g., .08)
LoCut = 0.08;
% Hi-pass cut-off for bandpass filter in Hz (e.g., .008)
HiCut = 0.008;
% Directory where the t1 is
t1dir = ['/media/lindenmp/SG8_4TB/Research_Projects/OCDPG/data/',subject,'/t1/'];
% name of t1 file.
t1name = ['t1.nii'];
% the path and filename of the template in MNI space to which everything
% will be normalized
mni_template = [spmdir,'templates/T1.nii'];
%mni_template = [fsldir(1:end-4),'/data/standard/MNI152_T1_2mm.nii'];
% directory where roi .mat files generated by marsbar are. Note - there
% should be not other .mat files in this directory. Only the roi .mat files
roidir = '/media/lindenmp/SG8_4TB/Research_Projects/OCDPG/TriStri/';
% generate list of roi file names
roifiles = dir([roidir,'*.nii']);
% Remove the all-in-one ROI files, we only want the separate binary masks.
roifiles(strcmp({roifiles.name},'Lk3.nii')) = [];
roifiles(strcmp({roifiles.name},'Rk3.nii')) = [];
% Compute 1st-level stats? 1 = yes; 0 = no.
run_stats = 0;
% OPTIONAL STEPS
% Option to erode wm and csf noise masks by 1 voxel. 0 = no; 1 = yes.
erosion = 0;
% Wavelet despiking (Patel 2014 Neuroimage)
waveDespike = 0;
% Scalar value indicating spatial smoothing kernal size in mm.
% To skip smoothing, set to kernel = [];
kernel = 8;
%==========================================================================
% Preprocess T1
% In this step, we take the subject's T1 image and segment it into the three
% basic tissue types using SPM8
% The tissue types are:
% 1) grey matter
% 2) white matter
% 3) cerebrospinal fluid
% The results are probabilistic brain images where higher values in voxels
% represent a greater chance that a given voxel is a given tissue type
%==========================================================================
tic;
cd(t1dir);
% Tissue segment T1 with SPM
% segment_t1([t1dir,t1name],spmdir);
% Define outputs
gm = [t1dir,'crwc1',t1name];
wm = [t1dir,'crwc2',t1name];
csf = [t1dir,'crwc3',t1name];
fprintf('T1 segmented \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Slice timing correction, realignment, and normalization
% In this step, we perform some standard steps for pre-processing functional
% data using SPM8
%==========================================================================
cd(rawdir);
tic;
% Run optional slice-timing correction and set inputs and outputs of
% realignment accordingly
if slicetime == 1
% slice-timing correction
slicetime_epis([rawdir,epi4d], nslices, TR, order, refslice, N);
% I/O names
realign_in = ['a',epi4d];
realign_out = ['ra',epi4d];
norm_epi = ['wa',epi4d];
else
% I/O names if slice-time correction not performed
realign_in = epi4d ;
realign_out = ['r',epi4d];
norm_epi = ['w',epi4d];
end
% realignment
spatial_prepro_4d([rawdir,realign_in],[t1dir,t1name],mni_template,voxdim,N);
fprintf('Slice-timing correction, realignment and EPI to T1 co-registration done \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Generate tissue masks
% In this step we generate two mask that we use later on as nuisance regressors.
% These are masks of the white matter and csf
% They are then used with CompCor
%==========================================================================
tic;
cd(t1dir);
% Threshold GM and WM tissue maps at .10 and csf at .50
system([fsldir,'fslmaths ',gm,' -thr .10 gm_thresh']);
system([fsldir,'fslmaths ',wm,' -thr .10 wm_thresh']);
system([fsldir,'fslmaths ',csf,' -thr .50 csf_thresh']);
% Add GM and WM to create a brain mask
system([fsldir,'fslmaths gm_thresh -add wm_thresh -add csf_thresh -bin ',t1dir,'t1_segmask']);
system([fsldir,'fslmaths ',t1dir,'w',t1name,' -mul t1_segmask wt1_brain']); % multiply by t1 to have non-binary version
% threshold images
system([fsldir,'fslmaths ',gm,' -thr .01 gm01']); % retain anything with >=1% probability of being gm
system([fsldir,'fslmaths ',wm,' -thr .99 wm99']); % retain only voxels with >=99% probability of wm
system([fsldir,'fslmaths ',csf,' -thr .99 csf99']); % retain only voxels with >=99% probability of csf
% binarize thresholded images
system([fsldir,'fslmaths gm01 -bin gm01_bin'])
system([fsldir,'fslmaths wm99 -bin wm99_bin'])
system([fsldir,'fslmaths csf99 -bin csf99_bin'])
% remove overlap between gm and white and csf masks
system([fsldir,'fslmaths gm01_bin -mul -1 -add 1 gm01_inv']) ;
system([fsldir,'fslmaths wm99_bin -mul gm01_inv wm_final']) ;
system([fsldir,'fslmaths csf99_bin -mul gm01_inv csf_final']) ;
% multiply to get back probability values
system([fsldir,'fslmaths wm_final -mul ',wm,' wm_final']) ;
system([fsldir,'fslmaths csf_final -mul ',csf,' csf_final']) ;
% erode wm and csf masks if chosen
if erosion == 1
system([fsldir,'fslmaths wm_final.nii -ero ',t1dir,'wm_final_erode']);
system([fsldir,'fslmaths csf_final.nii -ero ',t1dir,'csf_final_erode']);
system('gunzip -f *erode*');
wmfinal = 'wm_final_erode.nii';
csffinal = 'csf_final_erode.nii';
else
wmfinal = 'wm_final.nii';
csffinal = 'csf_final.nii';
end
fprintf('Nuisance masks generated \n');
times(cnt) = toc;
cnt = cnt+1;
% ------------------------------------------------------------------------------
% Mask out non-brain tissue
% ------------------------------------------------------------------------------
fprintf(1, 'Extracting brain..\n');
% mask filtered volume to retain only brain
system([fsldir,'fslmaths ',rawdir,norm_epi,' -mas ',t1dir,...
'wt1_brain ',rawdir,'brain_',norm_epi]);
%==========================================================================
% Detrend epis
%==========================================================================
DetrendIn = ['brain_',norm_epi];
tic;
cd(rawdir)
system(['mkdir temp']); % create separate directory for REST detrend function
dtdir=[rawdir,'temp/'];
system(['mv ',rawdir,DetrendIn,' ',dtdir]); % move 4d file to directory
rest_detrend(dtdir, '_detrend') % detrend epis using rest
% This write out a file called 'detrend_4DVolume'
system('mv temp/* .'); % move files back to rawdir
system('mv temp_detrend/* .'); % move files back to rawdir
system('rmdir temp temp_detrend'); % delete directories
fprintf('Detrending complete \n');
times(cnt) = toc;
cnt = cnt+1;
% ------------------------------------------------------------------------------
% Patel's Wavelet despiking
% ------------------------------------------------------------------------------
if waveDespike == 1
cd(rawdir)
WaveletDespike('detrend_4DVolume.nii','waveDespike','LimitRAM',10);
system('gunzip -f waveDespike*.gz');
end
%==========================================================================
% Extract nuisance time courses and run CompCor
%==========================================================================
if waveDespike
CompCorIn = 'waveDespike_wds.nii';
else
CompCorIn = 'detrend_4DVolume.nii';
end
tic;
cd(rawdir);
system([fsldir,'fslmeants -i ',CompCorIn,' -o wm_ts.txt -m ',t1dir,wmfinal,' --showall']);
system([fsldir,'fslmeants -i ',CompCorIn,' -o csf_ts.txt -m ',t1dir,csffinal,' --showall']);
% Read in wm time courses
TCwm = dlmread('wm_ts.txt');
TCwm(1:3,:) = []; % delete first 3 rows, which list voxel coords
% run wm compcor
vecs_wm = compcor(TCwm,'retain',[],5);
clear TCwm % clear to save memory
% Read in csf time courses
TCcsf = dlmread('csf_ts.txt');
TCcsf(1:3,:) = []; % delete first 3 rows, which list voxel coords
% run csf compcor
vecs_csf = compcor(TCcsf,'retain',[],5);
clear TCcsf % clear to save memory
fprintf('CompCor complete \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Clean data: fsl_regfilt
%==========================================================================
tic;
cd(rawdir)
% read in motion
mfile = dir('rp*txt');
mov = dlmread([rawdir,mfile(1).name]);
mov = detrend(mov,'linear'); % detrend motion regressors
mov_diff = [zeros(1,size(mov,2)); diff(mov)]; % compute differentials
% Combine all motion regressors and detrend
all_mov = [mov mov_diff];
% combine all noise
all = [all_mov vecs_wm vecs_csf];
% write out noise signals as text file
dlmwrite('noise_signals.txt',all,'delimiter','\t','precision','%.6f');
% clean data with fsl_regfilt
% Linden: x is a variable that stores the -f flag input for fsl_regfilt.
x = regexprep(num2str(1:size(all,2)),' ',',');
x = regexprep(x,',,,',',');
x = regexprep(x,',,',',');
x = ['"',x,'"'];
system([fsldir,'fsl_regfilt -i ',CompCorIn,' -o detrend_clean -d noise_signals.txt -f ',x]);
% This write out a file called 'detrend_clean'
clear x
system('gunzip -rf *detrend_clean*');
fprintf('Nuisance regression complete \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Bandpass filter with REST
%==========================================================================
tic;
% bandpass filter with rest toolbox
cd(rawdir)
system('mkdir temp'); % creater input directory for REST function
cleandir=[rawdir,'temp/'];
system(['mv ',rawdir,'detrend_clean.nii ',cleandir]);
rest_bandpass(cleandir,TR,LoCut,HiCut,'No',0,1) % bandpass epis using rest
% This write out a file called 'Filtered_4DVolume'
system('mv temp/* .'); % move files back into rawdir
system('mv temp_filtered/* .');
system('rmdir temp temp_filtered'); % delete directories
% Rename intuitively!!
movefile('Filtered_4DVolume.nii','rest_prepro.nii')
% % mask filtered volume to retain only brain
% system([fsldir,'fslmaths ',rawdir,'Filtered_4DVolume -mas ',t1dir,...
% 'wt1_brain ',rawdir,'Filtered_4DVolume_brain']);
fprintf('Bandpass filtering complete \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Spatially smooth the data (optional)
%==========================================================================
if ~isempty(kernel)
tic;
smooth_epi([rawdir,'rest_prepro.nii'],kernel,N);
fprintf('Spatial smoothing complete \n');
times(cnt) = toc;
cnt = cnt+1;
end
%==========================================================================
% Extract ROI time series
%==========================================================================
tic;
cd(rawdir)
% defin input name depending on whether smoothing was performed
if ~isempty(kernel)
extract_in = 'srest_prepro.nii';
else
extract_in = 'rest_prepro.nii';
end
roi_ts = [];
%generate list of rois
for i = 1:length(roifiles)
tic;
system([fsldir,'fslmaths ',[roidir,roifiles(i).name],' -mul ',gm,' roi_gs']);
system([fsldir,'fslmeants -i ',extract_in,' -o temp.txt -m roi_gs -w']);
roi_ts(:,i) = dlmread([rawdir,'temp.txt']);
fprintf('Time series extracted for ROI %d of %d \n',i,length(roifiles)); toc;
end
system(['rm ',rawdir,'temp.txt']);
system(['rm ',rawdir,'roi_gs*']);
fprintf('ROI time series extracted \n');
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Print reports
%==========================================================================
tic;
plot_motion(mov);
prepro_reports(mni_template,[t1dir,t1name],[t1dir,'wt1_brain.nii'],wm,csf,[rawdir,norm_epi]);
times(cnt) = toc;
cnt = cnt+1;
close all
%==========================================================================
% Save relevant variables
%==========================================================================
tic;
cd(rawdir);
save roi_ts roi_ts
save noise_ts vecs_wm vecs_csf *mov* all
% this step has been modified to assume that you have an even number of ROIs and then they are split into two halves.
% the first half are all from the left hemisphere and the second half are all from the right hemisphere.
% in my case, this translates to 3 Left hemi ROIs and 3 right hemi ROIs - Linden 10/6/15
R = roi_ts(:,1:length(roifiles)/2);
save spm_regs_L R
clear R
R = roi_ts(:,length(roifiles)/2+1:end);
save spm_regs_R R
clear R
% Original code - i.e., take all the ROIs
% R = roi_ts;
% save spm_regs R
fprintf(' Processing complete! \n Total time taken: %d mins \n Number of noise regressors: %d \n',...
sum(times)/60, size(all,2));
times(cnt) = toc;
cnt = cnt+1;
%==========================================================================
% Run first level specification and estimation
%==========================================================================
if run_stats
tic;
cd(rawdir);
% estimate first level for left hemisphere
mkdir('FirstLevel_L');
movefile('spm_regs_L.mat','FirstLevel_L')
first_level([rawdir,'FirstLevel_L/'],'scans',TR,[rawdir,extract_in],N,[rawdir,'FirstLevel_L/spm_regs_L.mat'],[t1dir,'wt1_brain.nii']);
% run contrasts
first_level_contrasts(1,[rawdir,'FirstLevel_L/SPM.mat'])
% estimate first level for right hemisphere
mkdir('FirstLevel_R');
movefile('spm_regs_R.mat','FirstLevel_R')
first_level([rawdir,'FirstLevel_R/'],'scans',TR,[rawdir,extract_in],N,[rawdir,'FirstLevel_R/spm_regs_R.mat'],[t1dir,'wt1_brain.nii']);
% run contrasts
first_level_contrasts(1,[rawdir,'FirstLevel_R/SPM.mat'])
fprintf('First level analysis done \n'); toc;
times(cnt) = toc;
cnt = cnt+1;
end
save times times
end