Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update default IPPM hyperparameters #385

Merged
merged 2 commits into from
Sep 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/getting-started.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ You see `ModuleNotFoundError: No module named 'kymata'`
# Allow the CBU poetry to communicate with pip
export PYTHON_KEYRING_BACKEND=keyring.backends.null.Keyring

$VENV_PATH/bin/poetry install
$VENV_PATH/bin/poetry install
```

- Now (within the Apptainer) you can run it using `poetry`, e.g.:
Expand Down
38 changes: 19 additions & 19 deletions kymata/ippm/denoising_strategies.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,15 +294,15 @@ class MaxPoolingStrategy(DenoisingStrategy):
def __init__(
self,
hemi: str,
should_normalise: bool = False,
should_normalise: bool = True,
should_cluster_only_latency: bool = False,
should_max_pool: bool = False,
normal_dist_threshold: float = 5,
should_merge_hemis: bool = False,
should_merge_hemis: bool = True,
should_exclude_insignificant: bool = True,
should_shuffle: bool = True,
bin_significance_threshold: int = 15,
bin_size: int = 25,
bin_significance_threshold: int = 1,
bin_size: int = 1,
):
super().__init__(
hemi,
Expand All @@ -321,14 +321,14 @@ class AdaptiveMaxPoolingStrategy(DenoisingStrategy):
def __init__(
self,
hemi: str,
should_normalise: bool = False,
should_normalise: bool = True,
should_cluster_only_latency: bool = False,
should_max_pool: bool = False,
normal_dist_threshold: float = 5,
should_merge_hemis: bool = False,
should_merge_hemis: bool = True,
should_exclude_insignificant: bool = True,
bin_significance_threshold: int = 5,
base_bin_size: int = 10,
bin_significance_threshold: int = 1,
base_bin_size: int = 1,
):
super().__init__(
hemi,
Expand All @@ -347,20 +347,20 @@ class GMMStrategy(DenoisingStrategy):
def __init__(
self,
hemi: str,
should_normalise: bool = False,
should_cluster_only_latency: bool = False,
should_normalise: bool = True,
should_cluster_only_latency: bool = True,
should_max_pool: bool = False,
normal_dist_threshold: float = 5,
should_merge_hemis: bool = False,
should_merge_hemis: bool = True,
should_exclude_insignificant: bool = True,
should_shuffle: bool = True,
number_of_clusters_upper_bound: int = 5,
number_of_clusters_upper_bound: int = 2,
covariance_type: str = "full",
max_iter: int = 1000,
n_init: int = 8,
n_init: int = 5,
init_params: str = "kmeans",
random_state: Optional[int] = None,
should_evaluate_using_AIC: bool = False,
should_evaluate_using_AIC: bool = True,
):
super().__init__(
hemi,
Expand Down Expand Up @@ -427,17 +427,17 @@ class MeanShiftStrategy(DenoisingStrategy):
def __init__(
self,
hemi: str,
should_normalise: bool = False,
should_cluster_only_latency: bool = False,
should_normalise: bool = True,
should_cluster_only_latency: bool = True,
should_max_pool: bool = False,
normal_dist_threshold: float = 5,
should_merge_hemis: bool = False,
should_merge_hemis: bool = True,
should_exclude_insignificant: bool = True,
should_shuffle: bool = True,
cluster_all: bool = False,
bandwidth: float = 30,
bandwidth: float = 0.5,
seeds: Optional[int] = None,
min_bin_freq: int = 2,
min_bin_freq: int = 1,
n_jobs: int = -1,
):
super().__init__(
Expand Down
28 changes: 12 additions & 16 deletions tests/test_ippm_denoising_strategies_integration_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,18 +101,15 @@ def test_MaxPoolingStrategy_AllTrue_Fit_Successfully():
)


def test_MaxPoolingStrategy_AllFalse_Fit_Successfully():
def test_MaxPoolingStrategy_AllDefault_Fit_Successfully():
expected_denoised = deepcopy(noisy_test_hexels)
expected_denoised["func1"].right_best_pairings = [
(-100, 1e-50),
(-75, 1e-75),
(30, 1e-100),
(199, 1e-90),
(211, 1e-55),
]
expected_denoised["func2"].right_best_pairings = [(30, 1e-99), (130, 1e-81)]
expected_denoised["func2"].right_best_pairings = [(30, 1e-99)]

strategy = MaxPoolingStrategy(HEMI_RIGHT, bin_significance_threshold=2)
strategy = MaxPoolingStrategy(HEMI_RIGHT)
actual_denoised = strategy.denoise(noisy_test_hexels)

assert (
Expand Down Expand Up @@ -148,7 +145,7 @@ def test_AdaptiveMaxPoolingStrategy_AllTrue_Fit_Successfully():
)


def test_AdaptiveMaxPoolingStrategy_AllFalse_Fit_Successfully():
def test_AdaptiveMaxPoolingStrategy_AllDefault_Fit_Successfully():
expected_denoised = deepcopy(noisy_test_hexels)
expected_denoised["func1"].right_best_pairings = [
(-75, 1e-75),
Expand All @@ -158,7 +155,7 @@ def test_AdaptiveMaxPoolingStrategy_AllFalse_Fit_Successfully():
expected_denoised["func2"].right_best_pairings = [(30, 1e-99), (130, 1e-81)]

strategy = AdaptiveMaxPoolingStrategy(
HEMI_RIGHT, bin_significance_threshold=2, base_bin_size=25
HEMI_RIGHT, bin_significance_threshold=2, base_bin_size=0.025
)
actual_denoised = strategy.denoise(noisy_test_hexels)

Expand Down Expand Up @@ -187,6 +184,7 @@ def test_GMMStrategy_AllTrue_Fit_Successfully():
HEMI_RIGHT,
should_normalise=True,
should_cluster_only_latency=True,
number_of_clusters_upper_bound=5,
random_state=random_seed,
)
actual_denoised = strategy.denoise(noisy_test_hexels)
Expand All @@ -201,7 +199,7 @@ def test_GMMStrategy_AllTrue_Fit_Successfully():
)


def test_GMMStrategy_AllFalse_Fit_Successfully():
def test_GMMStrategy_AllDefault_Fit_Successfully():
random_seed = 40
expected_denoised = deepcopy(noisy_test_hexels)
expected_denoised["func1"].right_best_pairings = [
Expand All @@ -213,11 +211,9 @@ def test_GMMStrategy_AllFalse_Fit_Successfully():
expected_denoised["func2"].right_best_pairings = [
(30, 1e-99),
(130, 1e-81),
(23, 1e-44),
(26, 1e-59),
]

strategy = GMMStrategy(HEMI_RIGHT, random_state=random_seed)
strategy = GMMStrategy(HEMI_RIGHT, number_of_clusters_upper_bound=5, random_state=random_seed, should_evaluate_using_AIC=False)
actual_denoised = strategy.denoise(noisy_test_hexels)

assert (
Expand Down Expand Up @@ -257,7 +253,7 @@ def test_DBSCANStrategy_AllTrue_Fit_Successfully():
)


def test_DBSCANStrategy_AllFalse_Fit_Successfully():
def test_DBSCANStrategy_AllDefault_Fit_Successfully():
expected_denoised = deepcopy(noisy_test_hexels)
expected_denoised["func1"].right_best_pairings = [
(-100, 1e-50),
Expand Down Expand Up @@ -290,7 +286,7 @@ def test_MeanShiftStrategy_AllTrue_Fit_Successfully():
expected_denoised["func2"].right_best_pairings = [(130, 1e-81), (30, 1e-99)]

strategy = MeanShiftStrategy(
HEMI_RIGHT, should_normalise=False, should_cluster_only_latency=True
HEMI_RIGHT, bandwidth=0.03, min_bin_freq=2
)
actual_denoised = strategy.denoise(noisy_test_hexels)

Expand All @@ -304,7 +300,7 @@ def test_MeanShiftStrategy_AllTrue_Fit_Successfully():
)


def test_MeanShiftStrategy_AllFalse_Fit_Successfully():
def test_MeanShiftStrategy_AllDefault_Fit_Successfully():
expected_denoised = deepcopy(noisy_test_hexels)
expected_denoised["func1"].right_best_pairings = [
(199, 1e-90),
Expand All @@ -313,7 +309,7 @@ def test_MeanShiftStrategy_AllFalse_Fit_Successfully():
]
expected_denoised["func2"].right_best_pairings = [(130, 1e-81), (30, 1e-99)]

strategy = MeanShiftStrategy(HEMI_RIGHT)
strategy = MeanShiftStrategy(HEMI_RIGHT, bandwidth=0.03, min_bin_freq=2)
actual_denoised = strategy.denoise(noisy_test_hexels)

assert (
Expand Down