You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Sep 1, 2021. It is now read-only.
Then copy and paste the numbers above. Then flatten the array by hand and get a list, a:
(The numbers of Boxes and a are from different results, so they are indepent. Just show that a is from Boxes)
a=[0.452,0.69375,0.116,0.104,0.22,0.512,0.1,0.30303703,0.038,0.064,0.056,0.16266667,0.41,0.33866667,0.192,0.224,0.83766667,0.78469484]
#Training yolov3, the imgs are resized to 606x608
#My imgs' size is 1920*1080. After k-means, I can ignore 1920*1080, right?
b=[round(608*x) for x in a]
boxes=[]
areas=[]
for i in range(0,len(a),2):
boxes.append([b[i],b[i+1]])
areas.append([b[i]*b[i+1]])
#print(boxes)
#print(areas)
new_areas=sorted(areas)
new_boxes=[]
#print(new_areas)
for i in range(0,len(boxes)):
mylist=list(range(0,len(boxes)))
for j in mylist:
if new_areas[i]==areas[j]:
new_boxes.append(boxes[j])
mylist.remove(j)
print(new_boxes)
I get Boxes:
[[0.0671875 0.09814815]
[0.07552083 0.11388889]
[0.05572917 0.08796296]
[0.24010417 0.17222222]
[0.32552083 0.26759259]
[0.0953125 0.12685185]
[0.05833333 0.08333333]
[0.12604167 0.14074074]
[0.18177083 0.15740741]]
Then copy and paste the numbers above. Then flatten the array by hand and get a list, a:
(The numbers of Boxes and a are from different results, so they are indepent. Just show that a is from Boxes)
a=[0.452,0.69375,0.116,0.104,0.22,0.512,0.1,0.30303703,0.038,0.064,0.056,0.16266667,0.41,0.33866667,0.192,0.224,0.83766667,0.78469484]
new_boxes=
[[23, 39], [34, 99], [71, 63], [61, 184], [117, 136], [134, 311], [249, 206], [275, 422], [509, 477]]
Should the following part of gaussian_yolov3_default.cfg be like this?
Many thanks!
The text was updated successfully, but these errors were encountered: