-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_corpus.py
443 lines (399 loc) · 19.5 KB
/
generate_corpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import requests
import logging
import xml.etree.ElementTree as ET
import codecs
import os
import sys
import time
import json
import pickle
from time import sleep
import subprocess
import multiprocessing as mp
from sqlalchemy.orm.exc import NoResultFound
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from database_schema import Corpus, Document, Entity, Sentence, Token, Normalization
"""
Generate corpus based on a pubmed query
"""
def parse_pubmed_xml(xml, pmid):
if xml.strip() == '':
print("PMID not found", pmid)
sys.exit()
else:
root = ET.fromstring(xml)
title = root.find('.//ArticleTitle')
if title is not None:
title = title.text
else:
title = ""
abstext = root.findall('.//AbstractText')
if abstext is not None and len(abstext) > 0:
abstext = [a.text for a in abstext]
if all([abst is not None for abst in abstext]):
abstext = '\n'.join(abstext)
else:
abstext = ""
else:
print("Abstract not found:", title, pmid)
print(xml[:50])
abstext = ""
# print xml
# sys.exit()
articleid = root.findall('.//ArticleId')
#for a in articleid:
# if a.get("IdType") == "pmc":
# self.pmcid = a.text[3:]
return title, abstext
def get_pubmed_abs(pmid):
logging.info("gettting {}".format(pmid))
# conn = httplib.HTTPConnection("eutils.ncbi.nlm.nih.gov")
# conn.request("GET", '/entrez/eutils/efetch.fcgi?db=pubmed&id={}&retmode=xml&rettype=xml'.format(pmid))
payload = {"db": "pubmed", "id": pmid, "retmode": "xml", "rettype": "xml"}
try:
r = requests.get('http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi', payload)
except requests.exceptions.ConnectionError:
r = requests.get('http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi', payload)
# logging.debug("Request Status: " + str(r.status_code))
response = r.text
# logging.info(response)
title, abstract = parse_pubmed_xml(response.encode("utf8"), pmid)
return title, abstract, str(r.status_code)
def get_pubmed_abstracts(searchterms, corpus_text_path, corpus_name, negative_pmids=[]):
session = get_session()
# searchterms = "+".join([t + "[mesh]" for t in terms])
newcorpus = Corpus(name=corpus_name)
for corpus in session.query(Corpus).filter(Corpus.name == corpus_name):
session.delete(corpus)
query = {"term": "{}+hasabstract[text]".format(searchterms),
#"mindate": "2006",
#"retstart": "7407",
"retmax": "100000",
"sort": "pub+date"} #max 100 000
r = requests.get('http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi', query)
logging.debug("Request Status: {}".format(str(r.status_code)))
response = r.text
print(r.url)
root = ET.fromstring(response)
pmids = []
repeats = 0
for pmid in root.find("IdList"):
if pmids not in negative_pmids:
pmids.append(pmid.text)
else:
print("repeated pmid: {}".format(pmid))
repeats += 1
print("repeated: {}".format(repeats))
#with codecs.open(corpus_text_path, 'w', 'utf-8') as docfile:
for i, pmid in enumerate(pmids):
#doc = pubmed.PubmedDocument(pmid)
title, abstract, status = get_pubmed_abs(pmid)
# docfile.write(pmid + "\t" + abstract.replace("\n", " ") + '\n')
doc = session.query(Document).filter(Document.pmid == int(pmid)).first()
if not doc: # create if it doesnt exist already
doc = Document(pmid=int(pmid), title=title, abstract=abstract)
newcorpus.documents.append(doc)
doc.corpora.append(newcorpus)
print("{}/{}".format(i, len(pmids)))
sleep(0.4)
session.add(newcorpus)
session.commit()
def process_documents(corpus_name, nlp):
session = get_session()
corpus_id = session.query(Corpus).filter(Corpus.name == corpus_name).one().id
docs = session.query(Document).filter(Document.corpora.any(id=corpus_id)).filter(Document.parsed == False).all()
#print(docs)
abstracts = [doc.abstract for doc in docs]
pmids = [doc.pmid for doc in docs]
#docs_generator = nlp.pipe(texts=abstracts, batch_size=10, n_threads=2)
for i, doc in enumerate(docs):
#for i, parsed_doc in enumerate(docs_generator):
print(i, '/', len(abstracts))
#print(doc.pmid, doc.title.encode("utf8"))
parsed_doc = nlp(doc.abstract)
doc = session.query(Document).filter(Document.corpora.any(id=corpus_id)) \
.filter(Document.pmid == pmids[i]).one()
for parsed_sentence in parsed_doc.sents:
sentence = Sentence(offset=parsed_sentence.start_char, order=parsed_sentence.start,
section='A', text=parsed_sentence.text)
doc.sentences.append(sentence)
session.add(sentence)
for word in parsed_sentence:
#print(word.i, word.idx, word.text, word.lemma, word.lemma_, word.tag, word.tag_, word.pos, word.pos_)
token = Token(start=word.idx-parsed_sentence.start_char, end=word.idx+len(word.text)-parsed_sentence.start_char,
order=word.i,
text=word.text, pos=word.tag_, lemma=word.lemma_)
sentence.tokens.append(token)
session.add(token)
doc.parsed = True
session.commit()
#for word in results:
# print(word.text, word.lemma, word.lemma_, word.tag, word.tag_, word.pos, word.pos_)
#session.commit()
def load_gold_relations(reltype):
with codecs.open("seedev_relation.txt", 'r', "utf-8") as f:
gold_relations = f.readlines()
entities = {} # text -> types
relations = {} # type#text -> type#text
for r in gold_relations:
values = r.strip().split("\t")
if values[1] == reltype or reltype == "all":
type1, entity1 = values[0].split("#")
type2, entity2 = values[2].split("#")
if entity1 not in entities:
entities[entity1] = set()
if entity2 not in entities:
entities[entity2] = set()
entities[entity1].add(type1)
entities[entity1].add(type2)
if values[0] not in relations:
relations[values[0]] = set()
relations[values[0]].add((values[2], values[1]))
return entities, relations
def run_mer(text, lexicon, docid="0", docsection="A"):
os.chdir("MER")
#get_entities_args = ["./get_entities.sh", docid, docsection, text, lexicon]
get_entities_args = ["./get_entities.sh", text, lexicon]
#print(get_entities_args)
p = subprocess.Popen(get_entities_args, stdout=subprocess.PIPE)
output, err = p.communicate()
os.chdir("..")
#print(output)
return output.decode()
def run_mer_externally(text, lexicons):
"""
Call server to run MER using REST api
:param text:
:param lexicons: list of lexicon names
:param docid:
:param docsection:
:return:
"""
base_url = "http://cloud141.ncg.ingrid.pt/IBELight/ibelight.cgi"
params = {"method":"getAnnotations",
"becalm_key": "3deb66a13349fc7889549dfda065a3d8877ac04f",
"text": text,
"types": lexicons}
request = requests.post(base_url, data=json.dumps(params))
return request.text
def annotate_sentence(sentence_text, sentence_id, lexicon):
#sentence_entities = run_mer_externally(sentence_text, [lexicon])
sentence_entities = run_mer(sentence_text, lexicon)
output = []
if sentence_entities.strip():
for l in sentence_entities.strip().split("\n"):
#print(l)
values = l.split('\t')
char_start, char_end = int(values[0]), int(values[1])
output.append((char_start, char_end, lexicon, values[2], sentence_id))
return output
def annotate_documents(corpus_name, lexicons=["CHEMICAL", "CELL_LINE_AND_CELL_TYPE", "DISEASE", "PROTEIN", "MIRNA",
"SUBCELLULAR_STRUCTURE", "TISSUE_AND_ORGAN"]):
session = get_session()
corpus = session.query(Corpus).filter(Corpus.name == corpus_name).one()
print("annotating {}...".format(corpus))
#procs = []
#output = mp.Queue()
results = []
for lexicon in lexicons:
for entity in session.query(Entity).filter(Entity.corpus_id == corpus.id)\
.filter(Entity.ner == "mer_" + lexicon):
session.delete(entity)
session.commit()
entities_added = 0
all_docs = session.query(Document).filter(Document.corpora.any(name=corpus_name)).all()
for i, doc in enumerate(all_docs):
#if i < 10000:
# continue
#if i == 100:
# sys.exit()
logging.info("{}/{} {}".format(str(i), str(len(all_docs)), doc.pmid))
for sent in session.query(Sentence).filter(Sentence.document_id == doc.pmid):
for lexicon in lexicons:
#annotate_sentence(sent, lexicon, output)
#p = mp.Process(target=annotate_sentence, args=(sent.text, sent.id, lexicon, output))
#procs.append(p)
#p.start()
#logging.info("annotating sentence with {}...".format(lexicon))
sentence_output = annotate_sentence(sent.text, sent.id, lexicon)
#logging.info(sent.text)
#logging.info(sentence_output)
#logging.info("done")
#results += sentence_output
#results = [output.get() for p in procs]
#for p in procs:
# p.join()
#print("adding entities...")
for entity in sentence_output:
char_start, char_end, lexicon, text, sentence_id = entity
try:
#logging.info("searching for tokens...")
token_start_id = session.query(Token)\
.filter(Token.sentence_id == sentence_id) \
.filter(Token.start == char_start) \
.one().id
token_end_id = session.query(Token)\
.filter(Token.sentence_id == sentence_id) \
.filter(Token.end == char_end) \
.one().id
normalized = text
#logging.info("done")
"""if lexicon == "cytokine":
q = session.query(Normalization).filter(Normalization.text == text) \
.filter(Normalization.entity_type == "cytokine").first()
if q:
normalized = q.reference_name
elif lexicon == "cell":
q = session.query(Normalization).filter(Normalization.text == text) \
.filter(Normalization.entity_type == "cell").first()
if q:
normalized = q.reference_name"""
entity = Entity(start=char_start, end=char_end,
start_token_id=token_start_id,
end_token_id=token_end_id,
text=text, type=lexicon,
normalized=normalized, ner="mer_" + lexicon,
sentence_id=sentence_id, corpus_id=corpus.id)
session.add(entity)
#sent.entities.append(entity)
#corpus.entities.append(entity)
entities_added += 1
except NoResultFound:
logging.info("sent {}: {}".format(sentence_id, sent.text))
logging.info("skipped this entity: {}".format(entity))
#print(sentence_id)
#sentence = session.query(Sentence).filter(Sentence.id == sentence_id).one()
session.commit()
logging.info("added {} entities".format(entities_added))
#session.commit()
def normalize_entities(goldstd, lexicons):
session = get_session()
for l in lexicons:
print(l)
if l == "cytokine":
for entity in session.query(Entity).filter(Entity.ner == "mer_" + l):
if goldstd in [c.name for c in entity.sentence.document.corpora]:
q = session.query(Normalization).filter(Normalization.text == entity.text) \
.filter(Normalization.entity_type == entity.type) \
.filter(Normalization.reference_source == "entrez").first()
if q:
# print(q)
normalized = q.reference_name
entity.normalized = normalized
else:
entity.normalized = entity.text
elif l == "cell":
for entity in session.query(Entity).filter(Entity.ner == "mer_" + l):
if goldstd in [c.name for c in entity.sentence.document.corpora]:
q = session.query(Normalization).filter(Normalization.text == entity.text) \
.filter(Normalization.entity_type == entity.type)\
.filter(Normalization.reference_source == "cellontology").first()
if q:
# print(q)
normalized = q.reference_name
entity.normalized = normalized
else:
entity.normalized = entity.text
session.commit()
def write_annotations_to_file(corpus_name):
pass
def annotate_corpus_relations(corpus, model, corpuspath):
logging.info("getting relations...")
# entities, relations = load_gold_relations(reltype)
logging.info("finding relations...")
# print entities.keys()[:20]
for did in corpus.documents:
for sentence in corpus.documents[did].sentences:
sentences_mirnas = []
sentence_tfs = []
#print sentence.entities.elist
for entity in sentence.entities.elist[model]:
if entity.type == "mirna":
sentences_mirnas.append(entity)
elif entity.type == "protein":
sentence_tfs.append(entity)
#for mirna in sentences_mirnas:
# for tf in sentence_tfs:
# ss = ssm.simui_go(mirna.best_go, tf.best_go)
# if ss > 0:
# print(ss, mirna.text, tf.text, mirna.best_go, tf.best_go)
print("saving corpus...")
corpus.save(corpuspath)
def get_session():
with open("config/database.config", 'r') as f:
for l in f:
if l.startswith("username"):
username = l.split("=")[-1].strip()
elif l.startswith("password"):
password = l.split("=")[-1].strip()
#engine = create_engine('sqlite:///database.sqlite', echo=False)
engine = create_engine('mysql+pymysql://{}:{}@localhost/immuno?charset=utf8mb4'.format(username, password), echo=False)
Session = sessionmaker(bind=engine)
#Base = declarative_base()
session = Session()
return session
def main():
start_time = time.time()
# try using configargparse for config files
try:
import configargparse
parser = configargparse.ArgumentParser(description='')
except ImportError:
import argparse
parser = argparse.ArgumentParser(description='')
parser.add('-c', '--my-config', required=False, is_config_file=True, help='config file path')
parser.add_argument("--goldstd", default="", dest="goldstd", help="Gold standard to be used.")
parser.add_argument("--corpus", dest="corpus_path", default="corpora/mirna-ds/abstracts.txt",
help="corpus path")
parser.add_argument("--models", dest="models", help="model destination path, without extension")
parser.add_argument("--entitytype", dest="etype", help="type of entities to be considered", default="all")
parser.add_argument("--pairtype", dest="ptype", help="type of pairs to be considered", default="all")
parser.add_argument("--doctype", dest="doctype", help="type of document to be considered", default="all")
parser.add_argument("--pubmedquery", dest="pubmedquery", help="terms parameter of a pubmed query",
default='(("cystic fibrosis"[MeSH Terms] OR ("cystic"[All Fields] AND "fibrosis"[All Fields]) OR "cystic fibrosis"[All Fields])\
AND ("micrornas"[MeSH Terms] OR "micrornas"[All Fields] OR "mirna"[All Fields])) AND ("2011/09/04"[PDat] : "2016/09/01"[PDat])')
parser.add_argument("-o", "--output", "--format", dest="output",
nargs=2, help="format path; output formats: xml, html, tsv, text, chemdner.")
parser.add_argument("--get_pubmed", action='store_true')
parser.add_argument("--parse", action='store_true')
parser.add_argument("--annotate_entities", action='store_true')
parser.add_argument("--normalize_entities", action='store_true')
parser.add_argument("--lexicons", default=["CHEMICAL", "CELL_LINE_AND_CELL_TYPE", "DISEASE", "PROTEIN", "MIRNA",
"SUBCELLULAR_STRUCTURE", "TISSUE_AND_ORGAN"], nargs='+')
parser.add_argument("--log", action="store", dest="loglevel", default="WARNING", help="Log level")
options = parser.parse_args()
# set logger
numeric_level = getattr(logging, options.loglevel.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % options.loglevel)
while len(logging.root.handlers) > 0:
logging.root.removeHandler(logging.root.handlers[-1])
logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s'
logging.basicConfig(level=numeric_level, format=logging_format)
logging.getLogger().setLevel(numeric_level)
logging.getLogger("requests.packages").setLevel(30)
#negative_pmids = open("negative_pmids.txt", 'r').readlines()
if options.get_pubmed:
get_pubmed_abstracts(options.pubmedquery, options.corpus_path, options.goldstd)
if options.parse:
import spacy
from spacy.symbols import ORTH, LEMMA, POS
nlp = spacy.load('en_core_web_md')
#nlp = spacy.load('en')
print("processing corpus")
process_documents(options.goldstd, nlp)
if options.annotate_entities:
annotate_documents(options.goldstd, options.lexicons)
write_annotations_to_file(options.goldstd)
#print session.query(Document).count()
if options.normalize_entities:
normalize_entities(options.goldstd, options.lexicons)
# annotate
#results = pickle.load(open("results/mirna_ds_entities.pickle", 'rb'))
#results.load_corpus("mirna_ds")
#corpus = results.corpus
#annotate_corpus_relations(corpus, "combined", "corpora/mirna-ds/abstracts.txt_1.pickle")
if __name__ == "__main__":
main()