diff --git a/README.md b/README.md index 8abd790..c8dee78 100644 --- a/README.md +++ b/README.md @@ -3,14 +3,16 @@ experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](h ============================================== Q-stack ============================================== -![qstack logo](./images/logo.png) +
+ ## Contents * [Contents](#Contents-) * [About](#about-) * [Install](#install-) * [Examples](#examples-) -* [Acknowledgements](#Acknowledgements-) +* [References](#references-) +* [Acknowledgements](#acknowledgements-) ## About [↑](#contents) @@ -53,7 +55,38 @@ python example_SPAHM.py ``` +## References [↑](#contents) + +* A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf, +“Electron density learning of non-covalent systems”, +Chem. Sci. **10**, 9492 (2019) +[![DOI](https://img.shields.io/badge/DOI-10.1039%2FC9SC02696G-blue)](https://doi.org/10.1039/C9SC02696G) + +* A. Fabrizio, K. R. Briling, D. D. Girardier, and C. Corminboeuf, +“Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation”, +J. Chem. Phys. **153**, 204111 (2020) +[![DOI](https://img.shields.io/badge/DOI-10.1063%2F5.0033326-blue)](https://doi.org/10.1063/5.0033326) + +* S. Vela, A. Fabrizio, K. R. Briling, and C. Corminboeuf, +“Machine-learning the transition density of the productive excited states of azo-dyes” +J. Phys. Chem. Lett. **12**, 5957–5962 (2021). +[![DOI](https://img.shields.io/badge/DOI-10.1021%2Facs.jpclett.1c01425-blue)](https://doi.org/10.1021/acs.jpclett.1c01425) + +* K. R. Briling, A. Fabrizio, and C. Corminboeuf, +“Impact of quantum-chemical metrics on the machine learning prediction of electron density”, +J. Chem. Phys. **155**, 024107 (2021) +[![DOI](https://img.shields.io/badge/DOI-10.1063/5.0055393-blue)](https://doi.org/10.1063/5.0055393) + +* A. Fabrizio, K. R. Briling, and C. Corminboeuf, +“SPAHM: the Spectrum of Approximated Hamiltonian Matrices representations”, +Digital Discovery, *1*, 286–294 (2022) +[![DOI](https://img.shields.io/badge/DOI-10.1039/D1DD00050K-blue)](https://doi.org/10.1039/D1DD00050K) + + ## Acknowledgements [↑](#contents) -The authors of Q-stack acknowledge the National Centre of Competence in Research (NCCR) "Materials' Revolution: Computational Design and Discovery of Novel Materials (MARVEL)" of the Swiss National Science Foundation (SNSF, grant number 182892) and the European Research Council (ERC, grant agreement no 817977). +The authors of Q-stack acknowledge the National Centre of Competence in Research (NCCR) +"Materials' Revolution: Computational Design and Discovery of Novel Materials (MARVEL)" +of the Swiss National Science Foundation (SNSF, grant number 182892) +and the European Research Council (ERC, grant agreement no 817977). -![ackw logo](./images/ackw.png) +![acknowledgements logos](./images/ackw.png) diff --git a/images/ackw.png b/images/ackw.png index 19c03a1..57d92d2 100644 Binary files a/images/ackw.png and b/images/ackw.png differ