diff --git a/README.md b/README.md index b83c7e4..ad3079b 100644 --- a/README.md +++ b/README.md @@ -86,7 +86,7 @@ Digital Discovery, *1*, 286–294 (2022) * P. van Gerwen, A. Fabrizio, M. Wodrich and C. Corminboeuf, "Physics-based representations for machine learning properties of chemical reactions", Machine Learning: Science and Technology, **3**, 045005 (2022) - [![DOI]()(https://doi.org/10.1088/2632-2153/ac8f1a) + [![DOI]((https://img.shields.io/badge/DOI-10.1088/2632-2153/ac8f1a-blue)])](https://doi.org/10.1088/2632-2153/ac8f1a) ## Acknowledgements [↑](#contents)