-
Notifications
You must be signed in to change notification settings - Fork 213
/
LRUCache.h
54 lines (50 loc) · 1.67 KB
/
LRUCache.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Author: Matthew Jin, [email protected]
Date: March 12, 2014
Problem: LRU Cache
Difficulty: Easy
Source: http://oj.leetcode.com/problems/lru-cache/
Notes:
Design and implement a data structure for Least Recently Used (LRU) cache.
It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Solution: Hash + list.
*/
struct CacheNode{
int key;
int value;
CacheNode(int k, int v) : key(k), value(v) {}
};
class LRUCache{
public:
LRUCache(int capacity) : size(capacity) {
}
int get(int key){
if (cachemap.find(key) != cachemap.end()) {
cachelist.splice(cachelist.begin(), cachelist, cachemap[key]);
return cachemap[key]->value;
}
else {
return -1;
}
}
void set(int key, int value) {
if (cachemap.find(key) != cachemap.end()) {
cachelist.splice(cachelist.begin(), cachelist, cachemap[key]);
cachemap[key]->value = value;
}
else {
if (size == cachelist.size()) {
cachemap.erase(cachelist.back().key);
cachelist.pop_back();
}
cachelist.push_front(CacheNode(key, value));
cachemap[key] = cachelist.begin();
}
}
private:
list<CacheNode> cachelist;
unordered_map<int, list<CacheNode>::iterator> cachemap;
int size;
};