-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
809 lines (712 loc) · 24.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
"""
app: Module to run the app
=============================================
.. moduleauthor:: Lilian MAREY <[email protected]>
"""
import dash
import dash_core_components as dcc
from dash.dependencies import Input, Output
import dash_html_components as html
from flask import send_file
from sys import exit
from datetime import date
import pandas as pd
from src.mysettings import months_list, firsts_of_the_month
from src.helpers import regions_of_country, regionError, adaptMetricsInterval
from src.preprocess import label_gender
import src.plots as plt
##########################################
# Import needed data
print('Computed data importation : ')
try:
df = pd.read_csv('data/preprocessed_data.csv')
df = df[df['Country'] != 'UK']
except:
print('data not found, please preprocess data before launching the app')
exit()
print('Done')
##########################################
# Create the hole app layout
app = dash.Dash(__name__)
app.layout = html.Div(
[
html.Div(
[
html.H2(
children = 'COVID-19: Trends by Age'
)
],
className = 'header'
),
html.Div(
className = 'rectangle_top'
),
html.Div(
className = 'rectangle_left'
),
html.Div(
className = 'rectangle_corner'
),
html.Div(
children =
[
html.H5(children = 'COVID-19 Web App')
],
className = 'description1'
),
html.Div(
[
dcc.Markdown('''
[About this project](https://github.com/lilianmarey/COVID19_Trends_by_Age)
[About the COVerAGE project](https://github.com/timriffe/covid_age) \n
[Download the complete COVerAge dataset](https://osf.io/mpwjq/)
''')
],
className = 'description2'
),
html.Div(
id = 'country_column_title',
children = [
html.H4(children = 'Country: ')
],
className = 'country_column_title'
),
html.Div(
id = 'country_column',
children = [
dcc.Dropdown(
id = 'country_checklist',
options = [
{'label' : i, 'value' : i} for i in
sorted(list(
set(
df['Country']
)
)
)
],
value = ['France'],
multi = True
)
],
className = 'country_column'
),
html.Div(
id = 'region_column_title',
children = [
html.H4(
children = 'Region: '
)
],
className = 'region_column_title'
),
html.Div(
id = 'region_column',
children = [
dcc.Dropdown(
id = 'region_checklist',
value = ['All'],
multi = True
)
],
className = 'region_column'
),
html.Div(
id = 'age_row_title',
children = [
html.H4(children = 'Age range: ')
],
className = 'age_row_title'
),
html.Div(
id = 'age_row',
children = [
dcc.Dropdown(
id = 'age_checklist',
options = [{'label' : 'All ranges', 'value' : 888}] + [{'label' : str(10 * i) + '-' + str(10 * i + 9) + ' year olds', 'value' : 10 * i} for i in range(10)]
+ [{'label' : str(100 ) + '-' + str(104) + ' year olds', 'value' : 100}],
value = [10 * i for i in range(4,9)],
multi = True
)
],
className = 'age_row'
),
html.Div(
id = 'metric_row_title',
children = [
html.H4(children = 'Metrics: ')
],
className = 'metric_row_title'
),
html.Div(
id = 'metric_row',
children = [
dcc.Dropdown(
id = 'metric_checklist',
options = [
{'label' : 'Deaths', 'value' : 'Deaths'},
{'label' : 'Cases', 'value' : 'Cases'},
{'label' : 'CFR' , 'value' : 'CFR'},
{'label' : 'Tests by cases' , 'value' : 'Tests by cases'},
{'label' : 'Tests' , 'value' : 'Tests'},
],
value = ['Deaths'],
multi = True
)
],
className = 'metric_row'
),
html.Div(
id = 'time_scale_row_title',
children = [
html.H4(children = 'Time interval: ')
],
className = 'time_scale_row_title'
),
html.Div(
id = 'time_scale_row',
children = [
dcc.Dropdown(
id = 'time_scale_checklist',
options = [
{'label' : 'Cumulative', 'value' : ''},
{'label' : 'Daily', 'value' : 'Daily '},
{'label' : 'Weekly', 'value' : 'Weekly '},
{'label' : 'Biweekly', 'value' : 'Biweekly '},
{'label' : 'Monthly', 'value' : 'Monthly '},
],
value = '',
multi = False
)
],
className = 'time_scale_row'
),
html.Div(
[
html.H4(children = 'Gender: ')
],
className = 'gender_row_title'
),
html.Div(
[
dcc.Dropdown(
id = 'gender_checklist',
options = [
{'label' : label_gender[i] , 'value' : i} for i in ['b', 'f', 'm']
],
value = ['b'],
multi = True
)
],
className = 'gender_row'
),
html.Div(
id = 'scale_row',
children = [
dcc.RadioItems(
id = 'scale_option',
options = [
{'label' : 'Log scale' , 'value' : 'log'},
{'label' : 'Linear scale' , 'value' : 'lin'}
],
value = 'lin'
)
],
className = 'scale_row'
),
html.Div(
id = 'rug_row',
children = [
dcc.Checklist(
id = 'rug_checklist',
options = [
{'label': 'Rug plot', 'value': 'rug'},
],
value = []
)
],
className = 'rug_row'
),
html.Div(
id = 'select_reverse_axis',
children = [
dcc.Checklist(
id = 'reverse_axis_button',
options = [
{'label' : 'Reverse axis' , 'value' : 'reverse'}
],
value = []
)
],
className = 'select_reverse_axis'
),
html.Div(
[
dcc.RadioItems(
id = 'map_button',
options = [
{'label' : 'Chart' , 'value' : 'chart'},
{'label' : 'Histogram by Ages' , 'value' : 'hist'},
{'label' : 'World Map' , 'value' : 'worldmap'},
{'label' : 'USA Map' , 'value' : 'usamap'}
],
value = 'chart',
labelStyle = {'display': 'block'}
)
],
className = 'select_map'
),
html.Div(
id = 'date_range_title',
children = [
html.H4(children='Date range: ')
],
className = 'date_range_title'
),
html.Div(
id = 'date_range_div',
children = [
dcc.DatePickerRange(
id = 'date_range',
start_date = date(2020, 1, 1),
end_date = date(2020, 11, 17),
min_date_allowed = date(2020, 1, 1),
display_format = 'MM DD YYYY',
initial_visible_month = '2020 08 07'
)
],
className = 'date_range'
),
html.Div(
id = 'trend_row_title',
children = [
html.H4(children='Trend method : ')
],
className = 'trend_row_title'
),
html.Div(
id = 'trend_row',
children = [
dcc.Dropdown(
id = 'trend_checklist',
options = [
{'label' : i , 'value' : i} for i in ['No trend'] + [str(i) + " Degree Polynom" for i in range(1, 10)]
],
value = 'No trend',
multi = False
)
],
className = 'trend_row'
),
html.Div(
id = 'forecast_row_title',
children = [
html.H4(children = 'Forecast (days) : ')
],
className = 'forecast_row_title'
),
html.Div(
id = 'forecast_row',
children = [
dcc.Slider(
id = 'forecast_slider',
min = 0,
max = 10,
marks = {i: '{}'.format(i) for i in range(11)},
value = 0,
)
],
className = 'forecast_row'
),
html.Div(
id = 'unit_row_title',
children = [
html.H4(children = 'Unit: ')
],
className = 'unit_row_title'
),
html.Div(
id = 'unit_row',
children = [
dcc.Dropdown(
id = 'unit_checklist',
options = [
{'label' : 'None' , 'value' : 'None'},
{'label' : 'Per million inhabitants (available for all countries & USA states)', 'value' : 'Per million inhabitants'},
],
value = 'None',
multi = False
)
],
className = 'unit_row'
),
html.Div(
[
dcc.Graph(
id = 'plot',
config = {'scrollZoom' : True},
)
],
className = 'main_graph'
),
html.Div(
id = 'select_table',
children = [
dcc.RadioItems(
id = 'table_button',
options = [
{'label' : 'Graph' , 'value' : 'graph'},
{'label' : 'Table' , 'value' : 'table'}
],
value = 'graph'
)
],
className = 'select_table'
),
html.Div(
id = 'download_button',
style = {'display': 'block'},
children = [
dcc.Markdown('[Download data](/dash/download)')
],
className = 'download_button'
),
html.Div(
id = 'bottom_slider',
style = {'display': 'none'},
children = [
dcc.Slider(
id='date_grad_hist_slider',
# marks={30*i: 'gap in day = {}'.format(30*i) for i in range(7)},
min = 0,
max = 330,
value = 330,
step = 9,
updatemode = 'drag',
marks = {
firsts_of_the_month[i] : months_list[i] + ' 2020' for i in range(12)
}
)
],
className = 'date_grad_hist'
),
html.Div(
[
html.Img(
src = '/assets/logo5.png',
style = {'height':'100%', 'width':'100%'}
)
],
className = 'logo1'
),
]
)
@app.server.route('/dash/download')
def download_csv():
return send_file('data/download/data_download.csv',
mimetype = 'text/csv',
attachment_filename = 'data_download.csv',
as_attachment = True)
@app.callback(
[
Output('country_column_title', component_property = 'style'),
Output('country_column', component_property = 'style'),
Output('region_column_title', component_property = 'style'),
Output('region_column', component_property = 'style'),
Output('age_row_title', component_property = 'style'),
Output('age_row', component_property = 'style'),
Output('metric_row_title', component_property = 'style'),
Output('metric_row', component_property = 'style'),
Output('time_scale_row', component_property = 'style'),
Output('time_scale_row_title', component_property = 'style'),
Output('scale_row', component_property = 'style'),
Output('rug_row', component_property = 'style'),
Output('select_reverse_axis', component_property = 'style'),
Output('date_range_div', component_property = 'style'),
Output('date_range_title', component_property = 'style'),
Output('trend_row', component_property = 'style'),
Output('trend_row_title', component_property = 'style'),
Output('forecast_row', component_property = 'style'),
Output('forecast_row_title', component_property = 'style'),
Output('unit_row', component_property = 'style'),
Output('unit_row_title', component_property = 'style'),
Output('select_table', component_property = 'style'),
Output('bottom_slider', component_property = 'style'),
Output('download_button', component_property = 'style'),
Output('country_checklist', component_property = 'multi'),
Output('region_checklist', component_property = 'multi'),
Output('age_checklist', component_property = 'multi'),
Output('metric_checklist', component_property = 'multi'),
Output('gender_checklist', component_property = 'multi'),
],
[
Input('map_button', 'value')
]
)
def global_display_callback(selected_graph):
"""Sets the grey part of the global displaying
Parameters:
-----------
selected_graph : str
the graph to plot
Returns:
--------
display_option : dict
the displaying option of the html div
"""
if selected_graph == 'chart':
display_option = [{'opacity': 1} for i in range(22)]+[{'opacity': .2}, {'opacity': 1}, True, True, True, True, True]
elif selected_graph == 'hist':
display_option = [
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0},
False,
False,
True,
False,
False
]
else:
display_option = [
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 1},
{'opacity': 0.2},
{'opacity': 1},
{'opacity': 0},
False,
False,
False,
False,
False
]
return display_option
@app.callback(
Output('region_checklist', 'options'),
[
Input('country_checklist', 'value')
]
)
def second_checklist_callback(selected_countries):
"""Gives the regions checklist options from selected_countries
Parameters:
-----------
selected_countries : str list
list of the countries selcted in the coresponding checklist
Returns:
--------
options : dict list
the "options" argument of the regions checklist
"""
if isinstance(selected_countries, str) or isinstance(selected_countries, str):
C = [selected_countries]
else:
C = selected_countries
if selected_countries in [[], None]:
C = ['France']
else:
pass
regions_list = regions_of_country(df, C)
options = [{'label' : 'All regions', 'value' : 'All_regions'}] + [{'label' : i, 'value' : i} for i in regions_list]
return options
@app.callback(
Output('plot', 'figure'),
[
Input('country_checklist', 'value'),
Input('region_checklist', 'value'),
Input('age_checklist', 'value'),
Input('metric_checklist', 'value'),
Input('time_scale_checklist', 'value'),
Input('scale_option', 'value'),
Input('gender_checklist', 'value'),
Input('map_button', 'value'),
Input('date_range', 'start_date'),
Input('date_range', 'end_date'),
Input('rug_checklist', 'value'),
Input('reverse_axis_button', 'value'),
Input('trend_checklist', 'value'),
Input('forecast_slider', 'value'),
Input('unit_checklist', 'value'),
Input('table_button', 'value'),
Input('date_grad_hist_slider', 'value')
]
)
def graph_callback(
selected_countries, selected_regions, selected_ages,
selected_metrics, selected_interval, selected_scale,
selected_genders, selected_graph, start_date, end_date,
rug_value, reverse_axis_value, selected_trend, forecast,
selected_unit, chart_or_table, hist_end_date
):
"""Plotting what has to be displayed (charts or map)
Parameters:
-----------
selected_countries : str list
the list of the countries to select
selected_regions : str list
the list of the region to select
selected_ages : int list
the list of the age ranges to select
selected_metrics : str list
the metrics that we want to plot
selected_interval : str
the time interval used to display data (Cumulative, Daily, Weekly, etc.)
selected_scale : str
defines wether y axis has logarithmic or linear scale ('lin' for linear, everything else for logarithmic)
selected_genders : str list
the list of the genders to select
selected_graph : str
defines wether the USA map or the charts are displayes ('map' for the map, everything else for charts)
start_date : str
the first date to be considered
end_date : str
the last date to be considered
rug_value : bool
activates the rug plot option
reverse_axis_value : bool
activates the reverse axis option
selected_trend : str
the trend that we want to plot
forecast : int
the number of forcasted days to display
selected_unit : str
the selected unit with which data is divided
chart_or_table : str
activates the table display option
hist_end_date : int
the last date to be considered
Returns:
--------
fig : plotly Figure
the corresponding plot
"""
if isinstance(selected_countries, str) or isinstance(selected_countries, str):
C = [selected_countries]
else:
C = selected_countries
if selected_countries in [[], None]:
C = ['France']
else:
pass
if isinstance(selected_regions, str):
R = [selected_regions]
else:
R = selected_regions
if selected_regions in [[], None] or regionError(df, C, R):
R = ['All']
elif 'All_regions' in selected_regions:
regions_list = list(regions_of_country(df, C))
if regions_list == []:
R = ['All']
else:
R = regions_list
else:
pass
if isinstance(selected_ages, int) or isinstance(selected_ages, str):
A = [selected_ages]
else:
A = selected_ages
if selected_ages in [[], None]:
A = [i * 10 for i in range(4, 9)]
elif 888 in A:
A = [10 * i for i in range(11)]
else:
pass
if isinstance(selected_metrics, str) or isinstance(selected_metrics, str):
M = [selected_metrics]
else:
M = selected_metrics
if selected_metrics in [[], None]:
M = ['Deaths']
else:
M = adaptMetricsInterval(M, selected_interval)
if selected_scale == 'lin':
S = False
else:
S = True
if isinstance(selected_genders, str) or isinstance(selected_genders, str):
G = [selected_genders]
else:
G = selected_genders
if selected_genders in [[], None]:
G = ['b']
else:
pass
if rug_value == ['rug']:
rug = 'rug'
else:
rug = ''
if reverse_axis_value == ['reverse']:
reverse = True
else:
reverse = False
if selected_trend in ['No trend', None]:
trend = 0
else:
trend = int(selected_trend[0])
if chart_or_table == 'table':
T = True
else:
T = False
if selected_graph == 'worldmap':
fig = plt.plot_world_map(df, A[0], G[0], M[0], selected_unit, hist_end_date)
return fig
elif selected_graph == 'usamap':
fig = plt.plot_usa_map(df, A[0], G[0], M[0], selected_unit, hist_end_date)
return fig
elif selected_graph == 'hist':
if R == []:
R = ['All']
else:
pass
fig = plt.plot_histogram(df, C[0], R[0], G[0], M[0], S, trend, T, hist_end_date)
return fig
else:
fig = plt.plot_metrics(
df, C, R, A, G, M, S,
start_date, end_date,
rug, reverse, trend, forecast,
selected_unit, T)
return fig
if __name__ == '__main__':
app.run_server(debug=True)