-
Notifications
You must be signed in to change notification settings - Fork 5
/
_prepare_demo_motion.py
98 lines (70 loc) · 3.37 KB
/
_prepare_demo_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this open-source project.
import os
import sys
import json
import random
import argparse
import numpy as np
from smplx import SMPLX
import torch
import torch
from scipy.spatial.transform import Rotation as R
def smplx_to_pos3d(data):
smplx = None
# print(data['betas'][0][:10].shape,flush=True)
smplx = SMPLX(model_path='/mnt/sfs-common/syli/duet_final/smplx', betas=data['betas'][:, :10], gender=data['meta']['gender'], \
batch_size=len(data['betas']), num_betas=10, use_pca=False, use_face_contour=True, flat_hand_mean=True)
data['poses'] = data['poses'].reshape(len(data['poses']), -1)
print(data['betas'].shape, data['poses'].shape,data['global_orient'].shape, data['transl'].shape)
keypoints3d = smplx.forward(
global_orient=torch.from_numpy(data['global_orient']).float(),
body_pose=torch.from_numpy(data['poses'][:, 3:66]).float(),
jaw_pose=torch.from_numpy(data['poses'][:, 66:69]).float(),
leye_pose=torch.from_numpy(data['poses'][:, 69:72]).float(),
reye_pose=torch.from_numpy(data['poses'][:, 72:75]).float(),
left_hand_pose=torch.from_numpy(data['poses'][:, 75:120]).float(),
right_hand_pose=torch.from_numpy(data['poses'][:, 120:]).float(),
transl=torch.from_numpy(data['transl']).float(),
betas=torch.from_numpy(data['betas'][:, :10]).float()
).joints.detach().numpy()[:, :55]
nframes = keypoints3d.shape[0]
return keypoints3d.reshape(nframes, -1)
def smplx_to_rotmat(data):
smpl_poses, smpl_trans = data['poses'], data['transl']
nframes = smpl_poses.shape[0]
njoints = 55
r = R.from_rotvec(smpl_poses.reshape([nframes*njoints, 3]))
rotmat = r.as_matrix().reshape([nframes, njoints, 3, 3])
rotmat = np.concatenate([
smpl_trans,
rotmat.reshape([nframes, njoints * 3 * 3])
], axis=-1)
nframes = rotmat.shape[0]
return rotmat.reshape(nframes, -1)
if __name__ == '__main__':
motion_root = '/mnt/sfs-common/syli/duet_final/demo_data/motion'
smpl_root = '/mnt/sfs-common/syli/duet_final/demo_data/motion/smplx'
pos3d_root = '/mnt/sfs-common/syli/duet_final/demo_data/motion/pos3d'
rotmat_root = '/mnt/sfs-common/syli/duet_final/demo_data/motion/rotmat'
os.makedirs(pos3d_root, exist_ok=True)
os.makedirs(rotmat_root, exist_ok=True)
for folder in os.listdir(smpl_root):
print(folder)
smplx_folder = os.path.join(smpl_root, folder)
pos3d_folder = os.path.join(pos3d_root, folder)
rotmat_folder = os.path.join(rotmat_root, folder)
if not os.path.exists(pos3d_folder):
os.mkdir(pos3d_folder)
if not os.path.exists(rotmat_folder):
os.mkdir(rotmat_folder)
for smplx_file in os.listdir(smplx_folder):
if not smplx_file.endswith('.npy'):
print(smplx_file)
continue
data = np.load(os.path.join(smplx_folder, smplx_file), allow_pickle=True, encoding='bytes').item()
keypoints3d = smplx_to_pos3d(data)
rotmat = smplx_to_rotmat(data)
print(rotmat.shape, flush=True)
np.save(os.path.join(pos3d_folder, smplx_file), keypoints3d)
np.save(os.path.join(rotmat_folder, smplx_file), rotmat)