forked from thuyngch/Human-Segmentation-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
101 lines (73 loc) · 3.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
import os, json, argparse, torch, warnings
warnings.filterwarnings("ignore")
import models as module_arch
import evaluation.losses as module_loss
import evaluation.metrics as module_metric
import dataloaders.dataloader as module_data
from utils.logger import Logger
from trainer.trainer import Trainer
#------------------------------------------------------------------------------
# Get instance
#------------------------------------------------------------------------------
def get_instance(module, name, config, *args):
return getattr(module, config[name]['type'])(*args, **config[name]['args'])
#------------------------------------------------------------------------------
# Main function
#------------------------------------------------------------------------------
def main(config, resume):
train_logger = Logger()
# Build model architecture
model = get_instance(module_arch, 'arch', config)
img_sz = config["train_loader"]["args"]["resize"]
model.summary(input_shape=(3, img_sz, img_sz))
# Setup data_loader instances
train_loader = get_instance(module_data, 'train_loader', config).loader
valid_loader = get_instance(module_data, 'valid_loader', config).loader
# Get function handles of loss and metrics
loss = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# Build optimizer, learning rate scheduler.
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = get_instance(torch.optim, 'optimizer', config, trainable_params)
lr_scheduler = get_instance(torch.optim.lr_scheduler, 'lr_scheduler', config, optimizer)
# Create trainer and start training
trainer = Trainer(model, loss, metrics, optimizer,
resume=resume,
config=config,
data_loader=train_loader,
valid_data_loader=valid_loader,
lr_scheduler=lr_scheduler,
train_logger=train_logger)
trainer.train()
#------------------------------------------------------------------------------
# Main execution
#------------------------------------------------------------------------------
if __name__ == '__main__':
# Argument parsing
parser = argparse.ArgumentParser(description='Train model')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args = parser.parse_args()
# Load config file
if args.config:
config = json.load(open(args.config))
path = os.path.join(config['trainer']['save_dir'], config['name'])
# Load config file from checkpoint, in case new config file is not given.
# Use '--config' and '--resume' arguments together to load trained model and train more with changed config.
elif args.resume:
config = torch.load(args.resume)['config']
# AssertionError
else:
raise AssertionError("Configuration file need to be specified. Add '-c config.json', for example.")
# Set visible devices
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"]=args.device
# Run the main function
main(config, args.resume)