forked from hgomersall/SSE-convolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
py_test_convolve.py
172 lines (131 loc) · 6.31 KB
/
py_test_convolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# Copyright (C) 2012 Henry Gomersall <[email protected]>
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the organization nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
import ctypes
from pretty_print_times import pretty_print_times, colour
def check_convolution(input_array, test_output, kernel):
correct_output = numpy.convolve(input_array, kernel, mode='valid')
return numpy.allclose(correct_output, test_output, rtol=1e-4, atol=1e-5)
def get_function_wrapper(function_name, input_array, output_array, kernel,
n_loops):
if output_array.ndim != 1 or input_array.ndim != 1 or kernel.ndim != 1:
raise ValueError('All the arrays should be dimension 1.')
if len(kernel) > len(input_array):
raise ValueError('The kernel should be shorter than the input '
'array')
if (input_array.dtype != 'float32' or output_array.dtype != 'float32'
or kernel.dtype != 'float32'):
raise ValueError('All the arrays should be of type \'float32\'')
if len(output_array) != len(input_array) - len(kernel) + 1:
raise ValueError('Output array should be of length '
'len(input_array) - len(kernel) + 1')
if len(input_array)%4 != 0:
raise ValueError('The input array length should be divisible by 4.')
if len(kernel)%4 != 0:
raise ValueError('The kernel length should be divisible by 4.')
lib = numpy.ctypeslib.load_library('libconvolve_funcs', '.')
c_function = getattr(lib, function_name)
c_function.restype = ctypes.c_int
c_function.argtypes = [
ctypes.POINTER(ctypes.c_float),
ctypes.POINTER(ctypes.c_float),
ctypes.c_int,
ctypes.POINTER(ctypes.c_float),
ctypes.c_int,
ctypes.c_int]
input_pointer = input_array.ctypes.data_as(
ctypes.POINTER(ctypes.c_float))
output_pointer = output_array.ctypes.data_as(
ctypes.POINTER(ctypes.c_float))
length = len(input_array)
kernel_pointer = kernel.ctypes.data_as(
ctypes.POINTER(ctypes.c_float))
kernel_length = len(kernel)
def function_wrapper():
c_function(input_pointer, output_pointer, length, kernel_pointer,
kernel_length, n_loops)
return function_wrapper
timeit_vars = []
#lengths = [256, 512, 1024, 2048, 4096, 8192, 16384, 32768]
lengths = [256, 512, 1024, 2048, 4096, 8192]
functions = [
'convolve_naive_multiple',
'convolve_sse_simple_multiple',
'convolve_sse_partial_unroll_multiple',
'convolve_sse_in_aligned_multiple',
'convolve_sse_in_aligned_fixed_kernel_multiple',
'convolve_sse_unrolled_avx_vector_multiple',
'convolve_sse_unrolled_vector_multiple',
'convolve_avx_unrolled_vector_multiple',
'convolve_avx_unrolled_vector_unaligned_multiple',
'convolve_avx_unrolled_vector_unaligned_fma_multiple',
'convolve_avx_unrolled_vector_m128_load_multiple',
'convolve_avx_unrolled_vector_aligned_multiple',
'convolve_avx_unrolled_vector_local_output_multiple',
'convolve_avx_unrolled_vector_partial_aligned_multiple'
]
def time_convolutions():
import timeit
def make_setup_script(func):
del timeit_vars[:]
timeit_vars.append(input_array)
timeit_vars.append(output_array)
timeit_vars.append(kernel)
timeit_vars.append(loops)
script = 'import ' + __name__ + ' as module;'
script += 'timeit_vars = module.timeit_vars;'
script += 'function = module.get_function_wrapper(\'' + func
script += '\', timeit_vars[0], timeit_vars[1], '
script += 'timeit_vars[2], timeit_vars[3]);'
return script
kernel = numpy.float32(numpy.random.randn(16))
times = numpy.zeros((len(functions), len(lengths)))
flops = numpy.zeros((len(functions), len(lengths)))
loops = 1000
for k, each_length in enumerate(lengths):
input_array = numpy.float32(numpy.random.randn(each_length))
output_array = numpy.empty(
len(input_array) - len(kernel) + 1, dtype='float32')
for l, each_function in enumerate(functions):
print(each_function, each_length)
time = min(timeit.repeat('function()',
setup=make_setup_script(each_function),
repeat=20, number=1))
print('valid:', check_convolution(input_array, output_array, kernel))
# empty the output array
output_array[:] = 0
times[l, k] = time/loops
flops[l, k] = (len(kernel) * len(output_array) * loops)/time
return times, flops
if __name__ == '__main__':
times, flops = time_convolutions()
# Chop off each "convolve_" and "_multiple" from each function name
function_type = [each[9:-9] for each in functions]
print(colour('\nTime in seconds\n', 'red'))
pretty_print_times(times, lengths, function_type, highlight='min')
print(colour('\nFlops\n', 'red'))
pretty_print_times(flops, lengths, function_type, highlight='max')