forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 1
/
coins_tests.cpp
1077 lines (932 loc) · 45 KB
/
coins_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2014-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addresstype.h>
#include <clientversion.h>
#include <coins.h>
#include <streams.h>
#include <test/util/poolresourcetester.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <txdb.h>
#include <uint256.h>
#include <undo.h>
#include <util/strencodings.h>
#include <map>
#include <string>
#include <variant>
#include <vector>
#include <boost/test/unit_test.hpp>
using namespace util::hex_literals;
int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out);
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
namespace
{
//! equality test
bool operator==(const Coin &a, const Coin &b) {
// Empty Coin objects are always equal.
if (a.IsSpent() && b.IsSpent()) return true;
return a.fCoinBase == b.fCoinBase &&
a.nHeight == b.nHeight &&
a.out == b.out;
}
class CCoinsViewTest : public CCoinsView
{
FastRandomContext& m_rng;
uint256 hashBestBlock_;
std::map<COutPoint, Coin> map_;
public:
CCoinsViewTest(FastRandomContext& rng) : m_rng{rng} {}
std::optional<Coin> GetCoin(const COutPoint& outpoint) const override
{
if (auto it{map_.find(outpoint)}; it != map_.end()) {
if (!it->second.IsSpent() || m_rng.randbool()) {
return it->second; // TODO spent coins shouldn't be returned
}
}
return std::nullopt;
}
uint256 GetBestBlock() const override { return hashBestBlock_; }
bool BatchWrite(CoinsViewCacheCursor& cursor, const uint256& hashBlock) override
{
for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)){
if (it->second.IsDirty()) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
map_[it->first] = it->second.coin;
if (it->second.coin.IsSpent() && m_rng.randrange(3) == 0) {
// Randomly delete empty entries on write.
map_.erase(it->first);
}
}
}
if (!hashBlock.IsNull())
hashBestBlock_ = hashBlock;
return true;
}
};
class CCoinsViewCacheTest : public CCoinsViewCache
{
public:
explicit CCoinsViewCacheTest(CCoinsView* _base) : CCoinsViewCache(_base) {}
void SelfTest(bool sanity_check = true) const
{
// Manually recompute the dynamic usage of the whole data, and compare it.
size_t ret = memusage::DynamicUsage(cacheCoins);
size_t count = 0;
for (const auto& entry : cacheCoins) {
ret += entry.second.coin.DynamicMemoryUsage();
++count;
}
BOOST_CHECK_EQUAL(GetCacheSize(), count);
BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret);
if (sanity_check) {
SanityCheck();
}
}
CCoinsMap& map() const { return cacheCoins; }
CoinsCachePair& sentinel() const { return m_sentinel; }
size_t& usage() const { return cachedCoinsUsage; }
};
} // namespace
BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup)
static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
struct CacheTest : BasicTestingSetup {
// This is a large randomized insert/remove simulation test on a variable-size
// stack of caches on top of CCoinsViewTest.
//
// It will randomly create/update/delete Coin entries to a tip of caches, with
// txids picked from a limited list of random 256-bit hashes. Occasionally, a
// new tip is added to the stack of caches, or the tip is flushed and removed.
//
// During the process, booleans are kept to make sure that the randomized
// operation hits all branches.
//
// If fake_best_block is true, assign a random uint256 to mock the recording
// of best block on flush. This is necessary when using CCoinsViewDB as the base,
// otherwise we'll hit an assertion in BatchWrite.
//
void SimulationTest(CCoinsView* base, bool fake_best_block)
{
// Various coverage trackers.
bool removed_all_caches = false;
bool reached_4_caches = false;
bool added_an_entry = false;
bool added_an_unspendable_entry = false;
bool removed_an_entry = false;
bool updated_an_entry = false;
bool found_an_entry = false;
bool missed_an_entry = false;
bool uncached_an_entry = false;
bool flushed_without_erase = false;
// A simple map to track what we expect the cache stack to represent.
std::map<COutPoint, Coin> result;
// The cache stack.
std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(std::make_unique<CCoinsViewCacheTest>(base)); // Start with one cache.
// Use a limited set of random transaction ids, so we do test overwriting entries.
std::vector<Txid> txids;
txids.resize(NUM_SIMULATION_ITERATIONS / 8);
for (unsigned int i = 0; i < txids.size(); i++) {
txids[i] = Txid::FromUint256(m_rng.rand256());
}
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
// Do a random modification.
{
auto txid = txids[m_rng.randrange(txids.size())]; // txid we're going to modify in this iteration.
Coin& coin = result[COutPoint(txid, 0)];
// Determine whether to test HaveCoin before or after Access* (or both). As these functions
// can influence each other's behaviour by pulling things into the cache, all combinations
// are tested.
bool test_havecoin_before = m_rng.randbits(2) == 0;
bool test_havecoin_after = m_rng.randbits(2) == 0;
bool result_havecoin = test_havecoin_before ? stack.back()->HaveCoin(COutPoint(txid, 0)) : false;
// Infrequently, test usage of AccessByTxid instead of AccessCoin - the
// former just delegates to the latter and returns the first unspent in a txn.
const Coin& entry = (m_rng.randrange(500) == 0) ?
AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0));
BOOST_CHECK(coin == entry);
if (test_havecoin_before) {
BOOST_CHECK(result_havecoin == !entry.IsSpent());
}
if (test_havecoin_after) {
bool ret = stack.back()->HaveCoin(COutPoint(txid, 0));
BOOST_CHECK(ret == !entry.IsSpent());
}
if (m_rng.randrange(5) == 0 || coin.IsSpent()) {
Coin newcoin;
newcoin.out.nValue = RandMoney(m_rng);
newcoin.nHeight = 1;
// Infrequently test adding unspendable coins.
if (m_rng.randrange(16) == 0 && coin.IsSpent()) {
newcoin.out.scriptPubKey.assign(1 + m_rng.randbits(6), OP_RETURN);
BOOST_CHECK(newcoin.out.scriptPubKey.IsUnspendable());
added_an_unspendable_entry = true;
} else {
// Random sizes so we can test memory usage accounting
newcoin.out.scriptPubKey.assign(m_rng.randbits(6), 0);
(coin.IsSpent() ? added_an_entry : updated_an_entry) = true;
coin = newcoin;
}
bool is_overwrite = !coin.IsSpent() || m_rng.rand32() & 1;
stack.back()->AddCoin(COutPoint(txid, 0), std::move(newcoin), is_overwrite);
} else {
// Spend the coin.
removed_an_entry = true;
coin.Clear();
BOOST_CHECK(stack.back()->SpendCoin(COutPoint(txid, 0)));
}
}
// Once every 10 iterations, remove a random entry from the cache
if (m_rng.randrange(10) == 0) {
COutPoint out(txids[m_rng.rand32() % txids.size()], 0);
int cacheid = m_rng.rand32() % stack.size();
stack[cacheid]->Uncache(out);
uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (const auto& entry : result) {
bool have = stack.back()->HaveCoin(entry.first);
const Coin& coin = stack.back()->AccessCoin(entry.first);
BOOST_CHECK(have == !coin.IsSpent());
BOOST_CHECK(coin == entry.second);
if (coin.IsSpent()) {
missed_an_entry = true;
} else {
BOOST_CHECK(stack.back()->HaveCoinInCache(entry.first));
found_an_entry = true;
}
}
for (const auto& test : stack) {
test->SelfTest();
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && m_rng.randbool() == 0) {
unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
if (fake_best_block) stack[flushIndex]->SetBestBlock(m_rng.rand256());
bool should_erase = m_rng.randrange(4) < 3;
BOOST_CHECK(should_erase ? stack[flushIndex]->Flush() : stack[flushIndex]->Sync());
flushed_without_erase |= !should_erase;
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && m_rng.randbool() == 0) {
//Remove the top cache
if (fake_best_block) stack.back()->SetBestBlock(m_rng.rand256());
bool should_erase = m_rng.randrange(4) < 3;
BOOST_CHECK(should_erase ? stack.back()->Flush() : stack.back()->Sync());
flushed_without_erase |= !should_erase;
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
//Add a new cache
CCoinsView* tip = base;
if (stack.size() > 0) {
tip = stack.back().get();
} else {
removed_all_caches = true;
}
stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
if (stack.size() == 4) {
reached_4_caches = true;
}
}
}
}
// Verify coverage.
BOOST_CHECK(removed_all_caches);
BOOST_CHECK(reached_4_caches);
BOOST_CHECK(added_an_entry);
BOOST_CHECK(added_an_unspendable_entry);
BOOST_CHECK(removed_an_entry);
BOOST_CHECK(updated_an_entry);
BOOST_CHECK(found_an_entry);
BOOST_CHECK(missed_an_entry);
BOOST_CHECK(uncached_an_entry);
BOOST_CHECK(flushed_without_erase);
}
}; // struct CacheTest
// Run the above simulation for multiple base types.
BOOST_FIXTURE_TEST_CASE(coins_cache_simulation_test, CacheTest)
{
CCoinsViewTest base{m_rng};
SimulationTest(&base, false);
CCoinsViewDB db_base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
SimulationTest(&db_base, true);
}
struct UpdateTest : BasicTestingSetup {
// Store of all necessary tx and undo data for next test
typedef std::map<COutPoint, std::tuple<CTransaction,CTxUndo,Coin>> UtxoData;
UtxoData utxoData;
UtxoData::iterator FindRandomFrom(const std::set<COutPoint> &utxoSet) {
assert(utxoSet.size());
auto utxoSetIt = utxoSet.lower_bound(COutPoint(Txid::FromUint256(m_rng.rand256()), 0));
if (utxoSetIt == utxoSet.end()) {
utxoSetIt = utxoSet.begin();
}
auto utxoDataIt = utxoData.find(*utxoSetIt);
assert(utxoDataIt != utxoData.end());
return utxoDataIt;
}
}; // struct UpdateTest
// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
// In particular it is tested that spending a duplicate coinbase tx
// has the expected effect (the other duplicate is overwritten at all cache levels)
BOOST_FIXTURE_TEST_CASE(updatecoins_simulation_test, UpdateTest)
{
SeedRandomForTest(SeedRand::ZEROS);
bool spent_a_duplicate_coinbase = false;
// A simple map to track what we expect the cache stack to represent.
std::map<COutPoint, Coin> result;
// The cache stack.
CCoinsViewTest base{m_rng}; // A CCoinsViewTest at the bottom.
std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(std::make_unique<CCoinsViewCacheTest>(&base)); // Start with one cache.
// Track the txids we've used in various sets
std::set<COutPoint> coinbase_coins;
std::set<COutPoint> disconnected_coins;
std::set<COutPoint> duplicate_coins;
std::set<COutPoint> utxoset;
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
uint32_t randiter = m_rng.rand32();
// 19/20 txs add a new transaction
if (randiter % 20 < 19) {
CMutableTransaction tx;
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
tx.vout[0].scriptPubKey.assign(m_rng.rand32() & 0x3F, 0); // Random sizes so we can test memory usage accounting
const int height{int(m_rng.rand32() >> 1)};
Coin old_coin;
// 2/20 times create a new coinbase
if (randiter % 20 < 2 || coinbase_coins.size() < 10) {
// 1/10 of those times create a duplicate coinbase
if (m_rng.randrange(10) == 0 && coinbase_coins.size()) {
auto utxod = FindRandomFrom(coinbase_coins);
// Reuse the exact same coinbase
tx = CMutableTransaction{std::get<0>(utxod->second)};
// shouldn't be available for reconnection if it's been duplicated
disconnected_coins.erase(utxod->first);
duplicate_coins.insert(utxod->first);
}
else {
coinbase_coins.insert(COutPoint(tx.GetHash(), 0));
}
assert(CTransaction(tx).IsCoinBase());
}
// 17/20 times reconnect previous or add a regular tx
else {
COutPoint prevout;
// 1/20 times reconnect a previously disconnected tx
if (randiter % 20 == 2 && disconnected_coins.size()) {
auto utxod = FindRandomFrom(disconnected_coins);
tx = CMutableTransaction{std::get<0>(utxod->second)};
prevout = tx.vin[0].prevout;
if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) {
disconnected_coins.erase(utxod->first);
continue;
}
// If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
if (utxoset.count(utxod->first)) {
assert(CTransaction(tx).IsCoinBase());
assert(duplicate_coins.count(utxod->first));
}
disconnected_coins.erase(utxod->first);
}
// 16/20 times create a regular tx
else {
auto utxod = FindRandomFrom(utxoset);
prevout = utxod->first;
// Construct the tx to spend the coins of prevouthash
tx.vin[0].prevout = prevout;
assert(!CTransaction(tx).IsCoinBase());
}
// In this simple test coins only have two states, spent or unspent, save the unspent state to restore
old_coin = result[prevout];
// Update the expected result of prevouthash to know these coins are spent
result[prevout].Clear();
utxoset.erase(prevout);
// The test is designed to ensure spending a duplicate coinbase will work properly
// if that ever happens and not resurrect the previously overwritten coinbase
if (duplicate_coins.count(prevout)) {
spent_a_duplicate_coinbase = true;
}
}
// Update the expected result to know about the new output coins
assert(tx.vout.size() == 1);
const COutPoint outpoint(tx.GetHash(), 0);
result[outpoint] = Coin{tx.vout[0], height, CTransaction{tx}.IsCoinBase()};
// Call UpdateCoins on the top cache
CTxUndo undo;
UpdateCoins(CTransaction{tx}, *(stack.back()), undo, height);
// Update the utxo set for future spends
utxoset.insert(outpoint);
// Track this tx and undo info to use later
utxoData.emplace(outpoint, std::make_tuple(tx,undo,old_coin));
} else if (utxoset.size()) {
//1/20 times undo a previous transaction
auto utxod = FindRandomFrom(utxoset);
CTransaction &tx = std::get<0>(utxod->second);
CTxUndo &undo = std::get<1>(utxod->second);
Coin &orig_coin = std::get<2>(utxod->second);
// Update the expected result
// Remove new outputs
result[utxod->first].Clear();
// If not coinbase restore prevout
if (!tx.IsCoinBase()) {
result[tx.vin[0].prevout] = orig_coin;
}
// Disconnect the tx from the current UTXO
// See code in DisconnectBlock
// remove outputs
BOOST_CHECK(stack.back()->SpendCoin(utxod->first));
// restore inputs
if (!tx.IsCoinBase()) {
const COutPoint &out = tx.vin[0].prevout;
Coin coin = undo.vprevout[0];
ApplyTxInUndo(std::move(coin), *(stack.back()), out);
}
// Store as a candidate for reconnection
disconnected_coins.insert(utxod->first);
// Update the utxoset
utxoset.erase(utxod->first);
if (!tx.IsCoinBase())
utxoset.insert(tx.vin[0].prevout);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (const auto& entry : result) {
bool have = stack.back()->HaveCoin(entry.first);
const Coin& coin = stack.back()->AccessCoin(entry.first);
BOOST_CHECK(have == !coin.IsSpent());
BOOST_CHECK(coin == entry.second);
}
}
// One every 10 iterations, remove a random entry from the cache
if (utxoset.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(utxoset)->first);
}
if (disconnected_coins.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(disconnected_coins)->first);
}
if (duplicate_coins.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(duplicate_coins)->first);
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && m_rng.randbool() == 0) {
unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
BOOST_CHECK(stack[flushIndex]->Flush());
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && m_rng.randbool() == 0) {
BOOST_CHECK(stack.back()->Flush());
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back().get();
}
stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
}
}
}
// Verify coverage.
BOOST_CHECK(spent_a_duplicate_coinbase);
}
BOOST_AUTO_TEST_CASE(ccoins_serialization)
{
// Good example
DataStream ss1{"97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"_hex};
Coin cc1;
ss1 >> cc1;
BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
BOOST_CHECK_EQUAL(cc1.nHeight, 203998U);
BOOST_CHECK_EQUAL(cc1.out.nValue, CAmount{60000000000});
BOOST_CHECK_EQUAL(HexStr(cc1.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("816115944e077fe7c803cfa57f29b36bf87c1d35"_hex_u8)))));
// Good example
DataStream ss2{"8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex};
Coin cc2;
ss2 >> cc2;
BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
BOOST_CHECK_EQUAL(cc2.nHeight, 120891U);
BOOST_CHECK_EQUAL(cc2.out.nValue, 110397);
BOOST_CHECK_EQUAL(HexStr(cc2.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex_u8)))));
// Smallest possible example
DataStream ss3{"000006"_hex};
Coin cc3;
ss3 >> cc3;
BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
BOOST_CHECK_EQUAL(cc3.nHeight, 0U);
BOOST_CHECK_EQUAL(cc3.out.nValue, 0);
BOOST_CHECK_EQUAL(cc3.out.scriptPubKey.size(), 0U);
// scriptPubKey that ends beyond the end of the stream
DataStream ss4{"000007"_hex};
try {
Coin cc4;
ss4 >> cc4;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure&) {
}
// Very large scriptPubKey (3*10^9 bytes) past the end of the stream
DataStream tmp{};
uint64_t x = 3000000000ULL;
tmp << VARINT(x);
BOOST_CHECK_EQUAL(HexStr(tmp), "8a95c0bb00");
DataStream ss5{"00008a95c0bb00"_hex};
try {
Coin cc5;
ss5 >> cc5;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure&) {
}
}
const static COutPoint OUTPOINT;
constexpr CAmount SPENT {-1};
constexpr CAmount ABSENT{-2};
constexpr CAmount VALUE1{100};
constexpr CAmount VALUE2{200};
constexpr CAmount VALUE3{300};
struct CoinEntry {
enum class State { CLEAN, DIRTY, FRESH, DIRTY_FRESH };
const CAmount value;
const State state;
constexpr CoinEntry(const CAmount v, const State s) : value{v}, state{s} {}
bool operator==(const CoinEntry& o) const = default;
friend std::ostream& operator<<(std::ostream& os, const CoinEntry& e) { return os << e.value << ", " << e.state; }
constexpr bool IsDirtyFresh() const { return state == State::DIRTY_FRESH; }
constexpr bool IsDirty() const { return state == State::DIRTY || IsDirtyFresh(); }
constexpr bool IsFresh() const { return state == State::FRESH || IsDirtyFresh(); }
static constexpr State ToState(const bool is_dirty, const bool is_fresh) {
if (is_dirty && is_fresh) return State::DIRTY_FRESH;
if (is_dirty) return State::DIRTY;
if (is_fresh) return State::FRESH;
return State::CLEAN;
}
};
using MaybeCoin = std::optional<CoinEntry>;
using CoinOrError = std::variant<MaybeCoin, std::string>;
constexpr MaybeCoin MISSING {std::nullopt};
constexpr MaybeCoin SPENT_DIRTY {{SPENT, CoinEntry::State::DIRTY}};
constexpr MaybeCoin SPENT_DIRTY_FRESH {{SPENT, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin SPENT_FRESH {{SPENT, CoinEntry::State::FRESH}};
constexpr MaybeCoin SPENT_CLEAN {{SPENT, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE1_DIRTY {{VALUE1, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE1_DIRTY_FRESH{{VALUE1, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin VALUE1_FRESH {{VALUE1, CoinEntry::State::FRESH}};
constexpr MaybeCoin VALUE1_CLEAN {{VALUE1, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE2_DIRTY {{VALUE2, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE2_DIRTY_FRESH{{VALUE2, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin VALUE2_FRESH {{VALUE2, CoinEntry::State::FRESH}};
constexpr MaybeCoin VALUE2_CLEAN {{VALUE2, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE3_DIRTY {{VALUE3, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE3_DIRTY_FRESH{{VALUE3, CoinEntry::State::DIRTY_FRESH}};
constexpr auto EX_OVERWRITE_UNSPENT{"Attempted to overwrite an unspent coin (when possible_overwrite is false)"};
constexpr auto EX_FRESH_MISAPPLIED {"FRESH flag misapplied to coin that exists in parent cache"};
static void SetCoinsValue(const CAmount value, Coin& coin)
{
assert(value != ABSENT);
coin.Clear();
assert(coin.IsSpent());
if (value != SPENT) {
coin.out.nValue = value;
coin.nHeight = 1;
assert(!coin.IsSpent());
}
}
static size_t InsertCoinsMapEntry(CCoinsMap& map, CoinsCachePair& sentinel, const CoinEntry& cache_coin)
{
CCoinsCacheEntry entry;
SetCoinsValue(cache_coin.value, entry.coin);
auto [iter, inserted] = map.emplace(OUTPOINT, std::move(entry));
assert(inserted);
if (cache_coin.IsDirty()) CCoinsCacheEntry::SetDirty(*iter, sentinel);
if (cache_coin.IsFresh()) CCoinsCacheEntry::SetFresh(*iter, sentinel);
return iter->second.coin.DynamicMemoryUsage();
}
static MaybeCoin GetCoinsMapEntry(const CCoinsMap& map, const COutPoint& outp = OUTPOINT)
{
if (auto it{map.find(outp)}; it != map.end()) {
return CoinEntry{
it->second.coin.IsSpent() ? SPENT : it->second.coin.out.nValue,
CoinEntry::ToState(it->second.IsDirty(), it->second.IsFresh())};
}
return MISSING;
}
static void WriteCoinsViewEntry(CCoinsView& view, const MaybeCoin& cache_coin)
{
CoinsCachePair sentinel{};
sentinel.second.SelfRef(sentinel);
CCoinsMapMemoryResource resource;
CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
auto usage{cache_coin ? InsertCoinsMapEntry(map, sentinel, *cache_coin) : 0};
auto cursor{CoinsViewCacheCursor(usage, sentinel, map, /*will_erase=*/true)};
BOOST_CHECK(view.BatchWrite(cursor, {}));
}
class SingleEntryCacheTest
{
public:
SingleEntryCacheTest(const CAmount base_value, const MaybeCoin& cache_coin)
{
auto base_cache_coin{base_value == ABSENT ? MISSING : CoinEntry{base_value, CoinEntry::State::DIRTY}};
WriteCoinsViewEntry(base, base_cache_coin);
if (cache_coin) cache.usage() += InsertCoinsMapEntry(cache.map(), cache.sentinel(), *cache_coin);
}
CCoinsView root;
CCoinsViewCacheTest base{&root};
CCoinsViewCacheTest cache{&base};
};
static void CheckAccessCoin(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
{
SingleEntryCacheTest test{base_value, cache_coin};
auto& coin = test.cache.AccessCoin(OUTPOINT);
BOOST_CHECK_EQUAL(coin.IsSpent(), !test.cache.GetCoin(OUTPOINT));
test.cache.SelfTest(/*sanity_check=*/false);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
}
BOOST_AUTO_TEST_CASE(ccoins_access)
{
/* Check AccessCoin behavior, requesting a coin from a cache view layered on
* top of a base view, and checking the resulting entry in the cache after
* the access.
* Base Cache Expected
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckAccessCoin(base_value, MISSING, base_value == VALUE1 ? VALUE1_CLEAN : MISSING);
CheckAccessCoin(base_value, SPENT_CLEAN, SPENT_CLEAN );
CheckAccessCoin(base_value, SPENT_FRESH, SPENT_FRESH );
CheckAccessCoin(base_value, SPENT_DIRTY, SPENT_DIRTY );
CheckAccessCoin(base_value, SPENT_DIRTY_FRESH, SPENT_DIRTY_FRESH );
CheckAccessCoin(base_value, VALUE2_CLEAN, VALUE2_CLEAN );
CheckAccessCoin(base_value, VALUE2_FRESH, VALUE2_FRESH );
CheckAccessCoin(base_value, VALUE2_DIRTY, VALUE2_DIRTY );
CheckAccessCoin(base_value, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH);
}
}
static void CheckSpendCoins(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
{
SingleEntryCacheTest test{base_value, cache_coin};
test.cache.SpendCoin(OUTPOINT);
test.cache.SelfTest();
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
}
BOOST_AUTO_TEST_CASE(ccoins_spend)
{
/* Check SpendCoin behavior, requesting a coin from a cache view layered on
* top of a base view, spending, and then checking
* the resulting entry in the cache after the modification.
* Base Cache Expected
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckSpendCoins(base_value, MISSING, base_value == VALUE1 ? SPENT_DIRTY : MISSING);
CheckSpendCoins(base_value, SPENT_CLEAN, SPENT_DIRTY);
CheckSpendCoins(base_value, SPENT_FRESH, MISSING );
CheckSpendCoins(base_value, SPENT_DIRTY, SPENT_DIRTY);
CheckSpendCoins(base_value, SPENT_DIRTY_FRESH, MISSING );
CheckSpendCoins(base_value, VALUE2_CLEAN, SPENT_DIRTY);
CheckSpendCoins(base_value, VALUE2_FRESH, MISSING );
CheckSpendCoins(base_value, VALUE2_DIRTY, SPENT_DIRTY);
CheckSpendCoins(base_value, VALUE2_DIRTY_FRESH, MISSING );
}
}
static void CheckAddCoin(const CAmount base_value, const MaybeCoin& cache_coin, const CAmount modify_value, const CoinOrError& expected, const bool coinbase)
{
SingleEntryCacheTest test{base_value, cache_coin};
bool possible_overwrite{coinbase};
auto add_coin{[&] { test.cache.AddCoin(OUTPOINT, Coin{CTxOut{modify_value, CScript{}}, 1, coinbase}, possible_overwrite); }};
if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
add_coin();
test.cache.SelfTest();
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
} else {
BOOST_CHECK_EXCEPTION(add_coin(), std::logic_error, HasReason(std::get<std::string>(expected)));
}
}
BOOST_AUTO_TEST_CASE(ccoins_add)
{
/* Check AddCoin behavior, requesting a new coin from a cache view,
* writing a modification to the coin, and then checking the resulting
* entry in the cache after the modification. Verify behavior with the
* AddCoin coinbase argument set to false, and to true.
* Base Cache Write Expected Coinbase
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_FRESH, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, false);
CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, VALUE2_FRESH, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, VALUE2_DIRTY_FRESH, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
}
}
static void CheckWriteCoins(const MaybeCoin& parent, const MaybeCoin& child, const CoinOrError& expected)
{
SingleEntryCacheTest test{ABSENT, parent};
auto write_coins{[&] { WriteCoinsViewEntry(test.cache, child); }};
if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
write_coins();
test.cache.SelfTest(/*sanity_check=*/false);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
} else {
BOOST_CHECK_EXCEPTION(write_coins(), std::logic_error, HasReason(std::get<std::string>(expected)));
}
}
BOOST_AUTO_TEST_CASE(ccoins_write)
{
/* Check BatchWrite behavior, flushing one entry from a child cache to a
* parent cache, and checking the resulting entry in the parent cache
* after the write.
* Parent Child Expected
*/
CheckWriteCoins(MISSING, MISSING, MISSING );
CheckWriteCoins(MISSING, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(MISSING, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(MISSING, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(MISSING, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_CLEAN, MISSING, SPENT_CLEAN );
CheckWriteCoins(SPENT_FRESH, MISSING, SPENT_FRESH );
CheckWriteCoins(SPENT_DIRTY, MISSING, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, MISSING, SPENT_DIRTY_FRESH );
CheckWriteCoins(SPENT_CLEAN, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(SPENT_CLEAN, SPENT_DIRTY_FRESH, SPENT_DIRTY );
CheckWriteCoins(SPENT_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(SPENT_FRESH, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(SPENT_DIRTY, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY, SPENT_DIRTY_FRESH, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(SPENT_DIRTY_FRESH, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(SPENT_CLEAN, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(SPENT_CLEAN, VALUE2_DIRTY_FRESH, VALUE2_DIRTY );
CheckWriteCoins(SPENT_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_FRESH, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_DIRTY, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(SPENT_DIRTY, VALUE2_DIRTY_FRESH, VALUE2_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_DIRTY_FRESH, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_CLEAN, MISSING, VALUE1_CLEAN );
CheckWriteCoins(VALUE1_FRESH, MISSING, VALUE1_FRESH );
CheckWriteCoins(VALUE1_DIRTY, MISSING, VALUE1_DIRTY );
CheckWriteCoins(VALUE1_DIRTY_FRESH, MISSING, VALUE1_DIRTY_FRESH );
CheckWriteCoins(VALUE1_CLEAN, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(VALUE1_CLEAN, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(VALUE1_FRESH, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(VALUE1_DIRTY, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(VALUE1_DIRTY_FRESH, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_CLEAN, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(VALUE1_CLEAN, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_FRESH, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(VALUE1_DIRTY, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_DIRTY_FRESH, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
// The checks above omit cases where the child state is not DIRTY, since
// they would be too repetitive (the parent cache is never updated in these
// cases). The loop below covers these cases and makes sure the parent cache
// is always left unchanged.
for (const MaybeCoin& parent : {MISSING,
SPENT_CLEAN, SPENT_DIRTY, SPENT_FRESH, SPENT_DIRTY_FRESH,
VALUE1_CLEAN, VALUE1_DIRTY, VALUE1_FRESH, VALUE1_DIRTY_FRESH}) {
for (const MaybeCoin& child : {MISSING,
SPENT_CLEAN, SPENT_FRESH,
VALUE2_CLEAN, VALUE2_FRESH}) {
auto expected{CoinOrError{parent}}; // TODO test failure cases as well
CheckWriteCoins(parent, child, expected);
}
}
}
struct FlushTest : BasicTestingSetup {
Coin MakeCoin()
{
Coin coin;
coin.out.nValue = m_rng.rand32();
coin.nHeight = m_rng.randrange(4096);
coin.fCoinBase = 0;
return coin;
}
//! For CCoinsViewCache instances backed by either another cache instance or
//! leveldb, test cache behavior and flag state (DIRTY/FRESH) by
//!
//! 1. Adding a random coin to the child-most cache,
//! 2. Flushing all caches (without erasing),
//! 3. Ensure the entry still exists in the cache and has been written to parent,
//! 4. (if `do_erasing_flush`) Flushing the caches again (with erasing),
//! 5. (if `do_erasing_flush`) Ensure the entry has been written to the parent and is no longer in the cache,
//! 6. Spend the coin, ensure it no longer exists in the parent.
//!
void TestFlushBehavior(
CCoinsViewCacheTest* view,
CCoinsViewDB& base,
std::vector<std::unique_ptr<CCoinsViewCacheTest>>& all_caches,
bool do_erasing_flush)
{
size_t cache_usage;
size_t cache_size;
auto flush_all = [this, &all_caches](bool erase) {
// Flush in reverse order to ensure that flushes happen from children up.
for (auto i = all_caches.rbegin(); i != all_caches.rend(); ++i) {
auto& cache = *i;
cache->SanityCheck();
// hashBlock must be filled before flushing to disk; value is
// unimportant here. This is normally done during connect/disconnect block.
cache->SetBestBlock(m_rng.rand256());
erase ? cache->Flush() : cache->Sync();
}
};
Txid txid = Txid::FromUint256(m_rng.rand256());
COutPoint outp = COutPoint(txid, 0);
Coin coin = MakeCoin();
// Ensure the coins views haven't seen this coin before.
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!view->HaveCoin(outp));
// --- 1. Adding a random coin to the child cache
//
view->AddCoin(outp, Coin(coin), false);
cache_usage = view->DynamicMemoryUsage();
cache_size = view->map().size();
// `base` shouldn't have coin (no flush yet) but `view` should have cached it.
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(view->HaveCoin(outp));
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::DIRTY_FRESH));
// --- 2. Flushing all caches (without erasing)
//
flush_all(/*erase=*/ false);
// CoinsMap usage should be unchanged since we didn't erase anything.
BOOST_CHECK_EQUAL(cache_usage, view->DynamicMemoryUsage());
BOOST_CHECK_EQUAL(cache_size, view->map().size());
// --- 3. Ensuring the entry still exists in the cache and has been written to parent
//
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN)); // State should have been wiped.
// Both views should now have the coin.
BOOST_CHECK(base.HaveCoin(outp));
BOOST_CHECK(view->HaveCoin(outp));
if (do_erasing_flush) {
// --- 4. Flushing the caches again (with erasing)
//
flush_all(/*erase=*/ true);
// Memory does not necessarily go down due to the map using a memory pool
BOOST_TEST(view->DynamicMemoryUsage() <= cache_usage);
// Size of the cache must go down though
BOOST_TEST(view->map().size() < cache_size);
// --- 5. Ensuring the entry is no longer in the cache
//
BOOST_CHECK(!GetCoinsMapEntry(view->map(), outp));
view->AccessCoin(outp);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN));
}
// Can't overwrite an entry without specifying that an overwrite is
// expected.
BOOST_CHECK_THROW(
view->AddCoin(outp, Coin(coin), /*possible_overwrite=*/ false),
std::logic_error);
// --- 6. Spend the coin.
//
BOOST_CHECK(view->SpendCoin(outp));
// The coin should be in the cache, but spent and marked dirty.
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), SPENT_DIRTY);
BOOST_CHECK(!view->HaveCoin(outp)); // Coin should be considered spent in `view`.
BOOST_CHECK(base.HaveCoin(outp)); // But coin should still be unspent in `base`.
flush_all(/*erase=*/ false);
// Coin should be considered spent in both views.
BOOST_CHECK(!view->HaveCoin(outp));
BOOST_CHECK(!base.HaveCoin(outp));
// Spent coin should not be spendable.
BOOST_CHECK(!view->SpendCoin(outp));
// --- Bonus check: ensure that a coin added to the base view via one cache
// can be spent by another cache which has never seen it.
//
txid = Txid::FromUint256(m_rng.rand256());
outp = COutPoint(txid, 0);
coin = MakeCoin();
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
all_caches[0]->AddCoin(outp, std::move(coin), false);
all_caches[0]->Sync();
BOOST_CHECK(base.HaveCoin(outp));
BOOST_CHECK(all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoinInCache(outp));