-
Notifications
You must be signed in to change notification settings - Fork 7
/
dataset.py
174 lines (158 loc) · 5.99 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Make-A-Video Latent Diffusion Models
# Copyright (C) 2023 Lopho <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from typing import List, Dict, Any, Union, Optional
import torch
from torch.utils.data import DataLoader, ConcatDataset
import datasets
from diffusers import DDPMScheduler
from functools import partial
import random
import numpy as np
@torch.no_grad()
def collate_fn(
batch: List[Dict[str, Any]],
noise_scheduler: DDPMScheduler,
num_frames: int,
hint_spacing: Optional[int] = None,
as_numpy: bool = True
) -> Dict[str, Union[torch.Tensor, np.ndarray]]:
if hint_spacing is None or hint_spacing < 1:
hint_spacing = num_frames
if as_numpy:
dtype = np.float32
else:
dtype = torch.float32
prompts = []
videos = []
for s in batch:
# prompt
prompts.append(torch.tensor(s['prompt']).to(dtype = torch.float32))
# frames
frames = torch.tensor(s['video']).to(dtype = torch.float32)
max_frames = len(frames)
assert max_frames >= num_frames
video_slice = random.randint(0, max_frames - num_frames)
frames = frames[video_slice:video_slice + num_frames]
frames = frames.permute(1, 0, 2, 3) # f, c, h, w -> c, f, h, w
videos.append(frames)
encoder_hidden_states = torch.cat(prompts) # b, 77, 768
latents = torch.stack(videos) # b, c, f, h, w
latents = latents * 0.18215
hint_latents = latents[:, :, ::hint_spacing, :, :]
hint_latents = hint_latents.repeat_interleave(hint_spacing, 2)
#hint_latents = hint_latents[:, :, :num_frames-1, :, :]
#input_latents = latents[:, :, 1:, :, :]
input_latents = latents
noise = torch.randn_like(input_latents)
bsz = input_latents.shape[0]
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
dtype = torch.int64
)
noisy_latents = noise_scheduler.add_noise(input_latents, noise, timesteps)
mask = torch.zeros([
noisy_latents.shape[0],
1,
noisy_latents.shape[2],
noisy_latents.shape[3],
noisy_latents.shape[4]
])
latent_model_input = torch.cat([noisy_latents, mask, hint_latents], dim = 1)
latent_model_input = latent_model_input.to(memory_format = torch.contiguous_format)
encoder_hidden_states = encoder_hidden_states.to(memory_format = torch.contiguous_format)
timesteps = timesteps.to(memory_format = torch.contiguous_format)
noise = noise.to(memory_format = torch.contiguous_format)
if as_numpy:
latent_model_input = latent_model_input.numpy().astype(dtype)
encoder_hidden_states = encoder_hidden_states.numpy().astype(dtype)
timesteps = timesteps.numpy().astype(np.int32)
noise = noise.numpy().astype(dtype)
else:
latent_model_input = latent_model_input.to(dtype = dtype)
encoder_hidden_states = encoder_hidden_states.to(dtype = dtype)
noise = noise.to(dtype = dtype)
return {
'latent_model_input': latent_model_input,
'encoder_hidden_states': encoder_hidden_states,
'timesteps': timesteps,
'noise': noise
}
def worker_init_fn(_: int):
wseed = torch.initial_seed() % (2**32-2) # max val for random 2**32 - 1
random.seed(wseed)
np.random.seed(wseed)
def load_dataset(
dataset_path: str,
model_path: str,
cache_dir: Optional[str] = None,
batch_size: int = 1,
num_frames: int = 24,
hint_spacing: Optional[int] = None,
num_workers: int = 0,
shuffle: bool = False,
as_numpy: bool = True,
pin_memory: bool = False,
pin_memory_device: str = ''
) -> DataLoader:
noise_scheduler: DDPMScheduler = DDPMScheduler.from_pretrained(
model_path,
subfolder = 'scheduler'
)
dataset = datasets.load_dataset(
dataset_path,
streaming = False,
cache_dir = cache_dir
)
merged_dataset = ConcatDataset([ dataset[s] for s in dataset ])
dataloader = DataLoader(
merged_dataset,
batch_size = batch_size,
num_workers = num_workers,
persistent_workers = num_workers > 0,
drop_last = True,
shuffle = shuffle,
worker_init_fn = worker_init_fn,
collate_fn = partial(collate_fn,
noise_scheduler = noise_scheduler,
num_frames = num_frames,
hint_spacing = hint_spacing,
as_numpy = as_numpy
),
pin_memory = pin_memory,
pin_memory_device = pin_memory_device
)
return dataloader
def validate_dataset(
dataset_path: str
) -> List[int]:
import os
import json
data_path = os.path.join(dataset_path, 'data')
meta = set(os.path.splitext(x)[0] for x in os.listdir(os.path.join(data_path, 'metadata')))
prompts = set(os.path.splitext(x)[0] for x in os.listdir(os.path.join(data_path, 'prompts')))
videos = set(os.path.splitext(x)[0] for x in os.listdir(os.path.join(data_path, 'videos')))
ok = meta.intersection(prompts).intersection(videos)
all_of_em = meta.union(prompts).union(videos)
not_ok = []
for a in all_of_em:
if a not in ok:
not_ok.append(a)
ok = list(ok)
ok.sort()
with open(os.path.join(data_path, 'id_list.json'), 'w') as f:
json.dump(ok, f)