-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
612 lines (534 loc) · 23.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import json
import sys
import os
import tensorflow as tf
WALK_LEN=5
N_WALKS=50
#edge iterator
np.random.seed(123)
def print_variable_summary():
import pprint
variables = sorted([[v.name, v.get_shape()] for v in tf.global_variables()])
pprint.pprint(variables)
class EdgeMinibatchIterator(object):
""" This minibatch iterator iterates over batches of sampled edges or
random pairs of co-occuring edges.
G -- networkx graph
id2idx -- dict mapping node ids to index in feature tensor
placeholders -- tensorflow placeholders object
context_pairs -- if not none, then a list of co-occuring node pairs (from random walks)
batch_size -- size of the minibatches
max_degree -- maximum size of the downsampled adjacency lists
n2v_retrain -- signals that the iterator is being used to add new embeddings to a n2v model
fixed_n2v -- signals that the iterator is being used to retrain n2v with only existing nodes as context
"""
def __init__(self, prefix_dir, placeholders, context_pairs=None, batch_size=100, max_degree=25, pos_num=10,
layer_sample=False, adj_name="adj", sample_choice="random", **kwargs):
self.placeholders = placeholders
self.batch_size = batch_size
self.max_degree = max_degree
self.adj_name = adj_name
self.sample_choice = sample_choice
self.batch_num = 0
self.pos_num = pos_num
self.layer_sample = layer_sample
self.nodes, self.id2idx, self.idx2id, self.edges, self.val_edges, self.adj, self.weights = self.preload_data(prefix_dir)
self.dic_adj = self.adj
#self.nodes = np.random.permutation(self.nodes)
adj_norm, self.deg = self.construct_adj()
self.adj = self.test_adj = adj_norm
#self.train_edges = self.edges = np.random.permutation(self.edges)
self.train_edges = self.edges
self.val_set_size = len(self.val_edges)
#if len(self.nodes) > len(self.adj):
# raise Exception("nodes_num must be lower or equal adj_size, but nodes_num %d larger than adj_size %d "%(len(self.nodes),len(self.adj)))
#print("total train nodes num : %d " % (len(self.nodes)))
#print("total train edges num : %d" % (len(self.train_edges)))
#print("total val edges num : %d" % (self.val_set_size))
def preload_data(self, prefix):
adj_path = os.path.join(os.getcwd(),prefix[2:], self.adj_name)
if not os.path.exists(adj_path):
print("Input file : %s not exists !" %(adj_path))
else:
print("load text data from: %s" %(adj_path))
nodes = []
id2idx = {}
idx2id = {}
adj = {}
edges = []
weights = {}
test_edges = []
ct = 0
for l in open(adj_path):
l = l.strip().split("\t")
if len(l) < 2 or l[0] in id2idx: continue
if len(l[0]) < 1 and len(l[1].split(":")) < 1: continue
id2idx[l[0]] = ct
idx2id[ct] = l[0]
ct += 1
for l in open(adj_path):
l = l.strip().split("\t")
if len(l) < 2 or (not id2idx.has_key(l[0])): continue
if len(l[0]) < 1 and len(l[1].split(":")) < 1: continue
temp = []
weight_temp = []
nodes.append(id2idx[l[0]])
adj_nodes = l[1].split(":")
end = len(adj_nodes)
if len(adj_nodes) > 45 and len(test_edges) < 5000:
end = len(adj_nodes) - 10
for i in range(0,end):
node_weight = adj_nodes[i].split("#")
if len(node_weight) < 2 or len(node_weight[0]) < 1 or len(node_weight[1]) < 1: continue
node = node_weight[0]
if node in id2idx:
temp.append(id2idx[node])
weight_temp.append(float(node_weight[1]))
edges.append((id2idx[l[0]],id2idx[node]))
for j in range(end, len(adj_nodes)):
node_weight = adj_nodes[i].split("#")
if len(node_weight) < 2 or len(node_weight[0]) < 1 or len(node_weight[1]) < 1: continue
node = node_weight[0]
if node in id2idx:
temp.append(id2idx[node])
weight_temp.append(float(node_weight[1]))
test_edges.append((id2idx[l[0]],id2idx[node]))
adj[id2idx[l[0]]] = temp
weights[id2idx[l[0]]] = weight_temp
return nodes, id2idx, idx2id, edges, test_edges, adj, weights
def construct_adj(self):
adj = len(self.id2idx)*np.ones((len(self.id2idx)+1, self.max_degree))
deg = np.zeros((len(self.id2idx),))
for nodeid in self.nodes:
if not nodeid in self.adj: continue
neighbors = np.array(self.adj[nodeid])
deg[nodeid] = len(neighbors)
if len(neighbors) == 0:
continue
if len(neighbors) > self.max_degree:
neighbors = np.random.choice(neighbors, self.max_degree, replace=False)
elif len(neighbors) < self.max_degree:
neighbors = np.random.choice(neighbors, self.max_degree, replace=True)
adj[nodeid, :] = neighbors
print("total length of dic_adj : %d"%(len(self.adj)))
return adj, deg
def iteration_per_epoch(self, mode="edge"):
if mode == "edge":
return len(self.train_edges)/self.batch_size
else:
return len(self.nodes)/self.batch_size
def end(self, mode="edge"):
if mode == "edge":
result = self.batch_num * self.batch_size >= len(self.train_edges)
else:
result = self.batch_num * self.batch_size >= len(self.nodes)
return result
def weighted_choice(self, weights):
rnd = random.random() * sum(weights)
for i, w in enumerate(weights):
rnd -= w
if rnd < 0:
return i
def batch_feed_dict(self, batch_edges, train=True):
batch1 = []
batch2 = []
#batch_layer = []
node_freq = {}
for node1, node2 in batch_edges:
if train:
if not self.dic_adj.has_key(node1): continue
batch1.append(node1)
node1_adj = self.dic_adj[node1]
#if len(node1_adj) > self.pos_num:
# node1_sample = np.random.choice(node1_adj, self.pos_num, replace=False)
#else:
# node1_sample = np.random.choice(node1_adj, self.pos_num, replace=True)
#batch_layer.append(node1_sample)
for node in node1_adj:
if node_freq.has_key(node):
v = node_freq[node]
v+=1.0
node_freq[node] = v
else: node_freq[node] = 1.0
if not train:
batch1.append(node1)
batch2.append(node2)
if train:
node_temp = sorted(node_freq.items(), lambda x, y: cmp(x[1], y[1]), reverse=True)
if len(node_temp) >= len(batch_edges):
for i in range(0,len(batch_edges)):
batch2.append(node_temp[i][0])
else:
adj_nodes = []
for node in node_temp:
adj_nodes.append(node[0])
adj_nodes = np.array(adj_nodes)
batch2 = np.random.choice(adj_nodes, len(batch_edges), replace=True)
feed_dict = dict()
feed_dict.update({self.placeholders['batch_size'] : len(batch_edges)})
feed_dict.update({self.placeholders['batch1']: batch1})
feed_dict.update({self.placeholders['batch2']: batch2})
#feed_dict.update({self.placeholders['batch_layer']: batch_layer})
return feed_dict
def next_minibatch_feed_dict(self, mode="edge"):
if mode == "edge":
start_idx = self.batch_num * self.batch_size
self.batch_num += 1
end_idx = min(start_idx + self.batch_size, len(self.train_edges))
batch_edges = self.train_edges[start_idx : end_idx]
else:
batch_edges = self.generate_edges_by_nodes()
return self.batch_feed_dict(batch_edges,train=self.layer_sample)
def generate_edges_by_nodes(self):
start_idx = self.batch_num * self.batch_size
self.batch_num += 1
end_idx = min(start_idx + self.batch_size, len(self.nodes))
batch_edges = []
for i in range(start_idx,end_idx):
if not self.nodes[i] in self.dic_adj or (len(self.dic_adj[self.nodes[i]]) < 1) or (not self.nodes[i] in self.weights): continue
adj_temp = self.dic_adj[self.nodes[i]]
if self.sample_choice == "random":
adj_node = np.random.choice(np.array(adj_temp), 1, replace=False)
batch_edges.append((self.nodes[i],adj_node[0]))
elif self.sample_choice == "weight_sample":
weight = self.weights[self.nodes[i]]
node_idx = self.weighted_choice(weight)
batch_edges.append((self.nodes[i],adj_temp[node_idx]))
return batch_edges
def num_training_batches(self):
return len(self.train_edges) // self.batch_size + 1
def val_feed_dict(self, size=None):
edge_list = self.val_edges
if size is None:
return self.batch_feed_dict(edge_list,train=False)
else:
ind = np.random.permutation(len(edge_list))
val_edges = [edge_list[i] for i in ind[:min(size, len(ind))]]
return self.batch_feed_dict(val_edges,train=False)
def incremental_val_feed_dict(self, size, iter_num):
edge_list = self.val_edges
val_edges = edge_list[iter_num*size:min((iter_num+1)*size,
len(edge_list))]
return self.batch_feed_dict(val_edges, train=False), (iter_num+1)*size >= len(self.val_edges), val_edges
def incremental_embed_feed_dict(self, size, iter_num):
node_list = self.nodes
val_nodes = node_list[iter_num*size:min((iter_num+1)*size,
len(node_list))]
val_edges = [(n,n) for n in val_nodes]
return self.batch_feed_dict(val_edges, train=False), (iter_num+1)*size >= len(node_list), val_edges
def shuffle(self, mode="edge"):
""" Re-shuffle the training set.
Also reset the batch number.
"""
if mode == "edge":
self.train_edges = np.random.permutation(self.train_edges)
else:
self.nodes = np.random.permutation(self.nodes)
self.batch_num = 0
#basic layer part
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
Implementation inspired by keras (http://keras.io).
# Properties
name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
_log_vars(): Log all variables
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging', 'model_size'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.sparse_inputs = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
if self.logging and not self.sparse_inputs:
tf.summary.histogram(self.name + '/inputs', inputs)
outputs = self._call(inputs)
if self.logging:
tf.summary.histogram(self.name + '/outputs', outputs)
return outputs
def _log_vars(self):
for var in self.vars:
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
#edge predict part
class BipartiteEdgePredLayer(Layer):
def __init__(self, input_dim1, input_dim2, placeholders, dropout=False, act=tf.nn.sigmoid,
loss_fn='xent', neg_sample_weights=1.0,
bias=False, bilinear_weights=False, **kwargs):
"""
Basic class that applies skip-gram-like loss
(i.e., dot product of node+target and node and negative samples)
Args:
bilinear_weights: use a bilinear weight for affinity calculation: u^T A v. If set to
false, it is assumed that input dimensions are the same and the affinity will be
based on dot product.
"""
super(BipartiteEdgePredLayer, self).__init__(**kwargs)
self.input_dim1 = input_dim1
self.input_dim2 = input_dim2
self.act = act
self.bias = bias
self.eps = 1e-7
# Margin for hinge loss
self.margin = 0.1
self.neg_sample_weights = neg_sample_weights
self.bilinear_weights = bilinear_weights
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
# output a likelihood term
self.output_dim = 1
with tf.variable_scope(self.name + '_vars'):
# bilinear form
if bilinear_weights:
#self.vars['weights'] = glorot([input_dim1, input_dim2],
# name='pred_weights')
self.vars['weights'] = tf.get_variable(
'pred_weights',
shape=(input_dim1, input_dim2),
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
if self.bias:
self.vars['bias'] = zeros([self.output_dim], name='bias')
if loss_fn == 'xent':
self.loss_fn = self._xent_loss
elif loss_fn == 'skipgram':
self.loss_fn = self._skipgram_loss
elif loss_fn == 'hinge':
self.loss_fn = self._hinge_loss
if self.logging:
self._log_vars()
def affinity(self, inputs1, inputs2):
""" Affinity score between batch of inputs1 and inputs2.
Args:
inputs1: tensor of shape [batch_size x feature_size].
"""
# shape: [batch_size, input_dim1]
if self.bilinear_weights:
prod = tf.matmul(inputs2, tf.transpose(self.vars['weights']))
self.prod = prod
result = tf.reduce_sum(inputs1 * prod, axis=1)
else:
result = tf.reduce_sum(inputs1 * inputs2, axis=1)
return result
def neg_cost(self, inputs1, neg_samples, hard_neg_samples=None):
""" For each input in batch, compute the sum of its affinity to negative samples.
Returns:
Tensor of shape [batch_size x num_neg_samples]. For each node, a list of affinities to
negative samples is computed.
"""
if self.bilinear_weights:
inputs1 = tf.matmul(inputs1, self.vars['weights'])
neg_aff = tf.matmul(inputs1, tf.transpose(neg_samples))
return neg_aff
def loss(self, inputs1, inputs2, neg_samples):
""" negative sampling loss.
Args:
neg_samples: tensor of shape [num_neg_samples x input_dim2]. Negative samples for all
inputs in batch inputs1.
"""
return self.loss_fn(inputs1, inputs2, neg_samples)
def _xent_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
aff = self.affinity(inputs1, inputs2)
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(aff), logits=aff)
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.zeros_like(neg_aff), logits=neg_aff)
loss = tf.reduce_sum(true_xent) + self.neg_sample_weights * tf.reduce_sum(negative_xent)
return loss
def _skipgram_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
aff = self.affinity(inputs1, inputs2)
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
neg_cost = tf.log(tf.reduce_sum(tf.exp(neg_aff), axis=1))
loss = tf.reduce_sum(aff - neg_cost)
return loss
def _hinge_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
aff = self.affinity(inputs1, inputs2)
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
diff = tf.nn.relu(tf.subtract(neg_aff, tf.expand_dims(aff, 1) - self.margin), name='diff')
loss = tf.reduce_sum(diff)
self.neg_shape = tf.shape(neg_aff)
return loss
def weights_norm(self):
return tf.nn.l2_norm(self.vars['weights'])
#loss, metric part
def masked_logit_cross_entropy(preds, labels, mask):
"""Logit cross-entropy loss with masking."""
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=labels)
loss = tf.reduce_sum(loss, axis=1)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.maximum(tf.reduce_sum(mask), tf.constant([1.]))
loss *= mask
return tf.reduce_mean(loss)
def masked_softmax_cross_entropy(preds, labels, mask):
"""Softmax cross-entropy loss with masking."""
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.maximum(tf.reduce_sum(mask), tf.constant([1.]))
loss *= mask
return tf.reduce_mean(loss)
def masked_l2(preds, actuals, mask):
"""L2 loss with masking."""
loss = tf.nn.l2(preds, actuals)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
loss *= mask
return tf.reduce_mean(loss)
def masked_accuracy(preds, labels, mask):
"""Accuracy with masking."""
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
accuracy_all *= mask
return tf.reduce_mean(accuracy_all)
#neighborhood sample
"""
Classes that are used to sample node neighborhoods
"""
class UniformNeighborSampler(Layer):
"""
Uniformly samples neighbors.
Assumes that adj lists are padded with random re-sampling
"""
def __init__(self, adj_info, **kwargs):
super(UniformNeighborSampler, self).__init__(**kwargs)
self.adj_info = adj_info
def _call(self, inputs):
ids, num_samples = inputs
adj_lists = tf.nn.embedding_lookup(self.adj_info, ids)
adj_lists = tf.transpose(tf.random_shuffle(tf.transpose(adj_lists)))
adj_lists = tf.slice(adj_lists, [0,0], [-1, num_samples])
return adj_lists
#init param part
def uniform(shape, scale=0.05, name=None):
"""Uniform init."""
initial = tf.random_uniform(shape, minval=-scale, maxval=scale, dtype=tf.float32)
return tf.Variable(initial, name=name)
def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
def zeros(shape, name=None):
"""All zeros."""
initial = tf.zeros(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
def ones(shape, name=None):
"""All ones."""
initial = tf.ones(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
def split_heads(x, num_heads):
return tf.transpose(split_last_dimension(x, num_heads), [0, 2, 1, 3])
def split_last_dimension(x, n):
old_shape = x.get_shape().dims
last = old_shape[-1]
new_shape = old_shape[:-1] + [n] + [last // n if last else None]
ret = tf.reshape(x, tf.concat([tf.shape(x)[:-1], [n, -1]], 0))
ret.set_shape(new_shape)
return ret
def combine_heads(x):
return combine_last_two_dimensions(tf.transpose(x, [0, 2, 1, 3]))
def combine_last_two_dimensions(x):
old_shape = x.get_shape().dims
a, b = old_shape[-2:]
new_shape = old_shape[:-2] + [a * b if a and b else None]
ret = tf.reshape(x, tf.concat([tf.shape(x)[:-2], [-1]], 0))
ret.set_shape(new_shape)
return ret
def load_data(prefix, normalize=True, load_walks=False):
G_data = json.load(open(prefix + "-G.json"))
G = json_graph.node_link_graph(G_data)
if isinstance(G.nodes()[0], int):
conversion = lambda n : int(n)
else:
conversion = lambda n : n
if os.path.exists(prefix + "-feats.npy"):
feats = np.load(prefix + "-feats.npy")
else:
print("No features present.. Only identity features will be used.")
feats = None
id_map = json.load(open(prefix + "-id_map.json"))
id_map = {conversion(k):int(v) for k,v in id_map.items()}
walks = []
class_map = json.load(open(prefix + "-class_map.json"))
if isinstance(list(class_map.values())[0], list):
lab_conversion = lambda n : n
else:
lab_conversion = lambda n : int(n)
class_map = {conversion(k):lab_conversion(v) for k,v in class_map.items()}
## Remove all nodes that do not have val/test annotations
## (necessary because of networkx weirdness with the Reddit data)
broken_count = 0
for node in G.nodes():
if not 'val' in G.node[node] or not 'test' in G.node[node]:
G.remove_node(node)
broken_count += 1
print("Removed {:d} nodes that lacked proper annotations due to networkx versioning issues".format(broken_count))
## Make sure the graph has edge train_removed annotations
## (some datasets might already have this..)
print("Loaded data.. now preprocessing..")
for edge in G.edges():
if (G.node[edge[0]]['val'] or G.node[edge[1]]['val'] or
G.node[edge[0]]['test'] or G.node[edge[1]]['test']):
G[edge[0]][edge[1]]['train_removed'] = True
else:
G[edge[0]][edge[1]]['train_removed'] = False
if normalize and not feats is None:
from sklearn.preprocessing import StandardScaler
train_ids = np.array([id_map[n] for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']])
train_feats = feats[train_ids]
scaler = StandardScaler()
scaler.fit(train_feats)
feats = scaler.transform(feats)
if load_walks:
with open(prefix + "-walks.txt") as fp:
for line in fp:
walks.append(map(conversion, line.split()))
return G, feats, id_map, walks, class_map
def run_random_walks(G, nodes, num_walks=N_WALKS):
pairs = []
for count, node in enumerate(nodes):
if G.degree(node) == 0:
continue
for i in range(num_walks):
curr_node = node
for j in range(WALK_LEN):
next_node = random.choice(G.neighbors(curr_node))
# self co-occurrences are useless
if curr_node != node:
pairs.append((node,curr_node))
curr_node = next_node
if count % 1000 == 0:
print("Done walks for", count, "nodes")
return pairs