forked from mist-devel/mist-firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hdd.c
817 lines (727 loc) · 25.3 KB
/
hdd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
Copyright 2008, 2009 Jakub Bednarski
This file is part of Minimig
Minimig is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Minimig is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// 2009-11-22 - read/write multiple implemented
// 2020-11-14 - AMR: Simplified and combined read / readm + write / writem. AROS IDE now works.
#ifdef __GNUC__
#include "AT91SAM7S256.h"
#include "stdio.h"
#include "string.h"
#else
#include <stdio.h>
#include <string.h>
#endif
#include "errors.h"
#include "hardware.h"
#include "fat.h"
#include "hdd.h"
#include "hdd_internal.h"
#include "mmc.h"
#include "menu.h"
#include "fpga.h"
#include "debug.h"
#define SWAP(a) ((((a)&0x000000ff)<<24)|(((a)&0x0000ff00)<<8)|(((a)&0x00ff0000)>>8)|(((a)&0xff000000)>>24))
hardfileTYPE *hardfile[2];
// hardfile structure
hdfTYPE hdf[2];
// we scan for RDB without mounting the file as a unit, so need a file struct specifically for this task
fileTYPE rdbfile;
static void SwapBytes(char *c, unsigned int len)
{
char temp;
while(len) {
temp = *c;
*c=c[1];
c[1]=temp;
len-=2;
c+=2;
}
}
// RDBChecksum()
static void RDBChecksum(unsigned long *p)
{
unsigned long count=p[1];
unsigned long c2;
long result=0;
p[2]=0;
for(c2=0;c2<count;++c2) result+=p[c2];
p[2]=(unsigned long)-result;
}
// FakeRDB()
// if the hardfile doesn't have a RigidDiskBlock, we synthesize one
static void FakeRDB(int unit,int block)
{
int i;
// start by clearing the sector buffer
memset(sector_buffer, 0, 512);
// if we're asked for LBA 0 we create an RDSK block, and if LBA 1, a PART block
switch(block) {
case 0: {
// RDB
hdd_debugf("FAKE: RDB");
struct RigidDiskBlock *rdb=(struct RigidDiskBlock *)sector_buffer;
rdb->rdb_ID = 'R'<<24 | 'D' << 16 | 'S' << 8 | 'K';
rdb->rdb_Summedlongs=0x40;
rdb->rdb_HostID=0x07;
rdb->rdb_BlockBytes=0x200;
rdb->rdb_Flags=0x12; // (Disk ID valid, no LUNs after this one)
rdb->rdb_BadBlockList=0xffffffff; // We don't provide a bad block list
rdb->rdb_PartitionList=1;
rdb->rdb_FileSysHeaderList=0xffffffff;
rdb->rdb_DriveInit=0xffffffff;
rdb->rdb_Reserved1[0]=0xffffffff;
rdb->rdb_Reserved1[1]=0xffffffff;
rdb->rdb_Reserved1[2]=0xffffffff;
rdb->rdb_Reserved1[3]=0xffffffff;
rdb->rdb_Reserved1[4]=0xffffffff;
rdb->rdb_Reserved1[5]=0xffffffff;
rdb->rdb_Cylinders=hdf[unit].cylinders;
rdb->rdb_Sectors=hdf[unit].sectors;
rdb->rdb_Heads=hdf[unit].heads;
rdb->rdb_Interleave=1;
rdb->rdb_Park=rdb->rdb_Cylinders;
rdb->rdb_WritePreComp=rdb->rdb_Cylinders;
rdb->rdb_ReducedWrite=rdb->rdb_Cylinders;
rdb->rdb_StepRate=3;
rdb->rdb_RDBBlocksLo=0;
rdb->rdb_RDBBlocksHi=1;
rdb->rdb_LoCylinder=1;
rdb->rdb_HiCylinder=rdb->rdb_Cylinders-1;
rdb->rdb_CylBlocks=rdb->rdb_Heads * rdb->rdb_Sectors;
rdb->rdb_AutoParkSeconds=0;
rdb->rdb_HighRDSKBlock=1;
strcpy(rdb->rdb_DiskVendor,"Do not ");
strcpy(rdb->rdb_DiskProduct, "repartition!");
// swap byte order of strings to be able to "unswap" them after checksum
unsigned long *p = (unsigned long*)rdb;
for(i=0;i<(8+16)/4;i++) p[40+i] = SWAP(p[40+i]);
RDBChecksum((unsigned long *)rdb);
// swap byte order of first 0x40 long values
for(i=0;i<0x40;i++) p[i] = SWAP(p[i]);
break;
}
case 1: {
// Partition
hdd_debugf("FAKE: Partition");
struct PartitionBlock *pb=(struct PartitionBlock *)sector_buffer;
pb->pb_ID = 'P'<<24 | 'A' << 16 | 'R' << 8 | 'T';
pb->pb_Summedlongs=0x40;
pb->pb_HostID=0x07;
pb->pb_Next=0xffffffff;
pb->pb_Flags=0x1; // bootable
pb->pb_DevFlags=0;
strcpy(pb->pb_DriveName,unit?"1HD\003":"0HD\003"); // "DH0"/"DH1" BCPL string
pb->pb_Environment.de_TableSize=0x10;
pb->pb_Environment.de_SizeBlock=0x80;
pb->pb_Environment.de_Surfaces=hdf[unit].heads;
pb->pb_Environment.de_SectorPerBlock=1;
pb->pb_Environment.de_BlocksPerTrack=hdf[unit].sectors;
pb->pb_Environment.de_Reserved=2;
pb->pb_Environment.de_LowCyl=1;
pb->pb_Environment.de_HighCyl=hdf[unit].cylinders-1;
pb->pb_Environment.de_NumBuffers=30;
pb->pb_Environment.de_MaxTransfer=0xffffff;
pb->pb_Environment.de_Mask=0x7ffffffe;
pb->pb_Environment.de_DosType=0x444f5301;
RDBChecksum((unsigned long *)pb);
// swap byte order of first 0x40 entries
unsigned long *p = (unsigned long*)pb;
for(i=0;i<0x40;i++) p[i] = SWAP(p[i]);
break;
}
default: {
break;
}
}
}
// IdentifiyDevice()
// builds Identify Device struct
void IdentifyDevice(unsigned short *pBuffer, unsigned char unit)
{
char *p, i, x;
unsigned long total_sectors = hdf[unit].cylinders * hdf[unit].heads * hdf[unit].sectors;
memset(pBuffer, 0, 512);
switch(hdf[unit].type) {
case HDF_FILE | HDF_SYNTHRDB:
case HDF_FILE:
pBuffer[0] = 1 << 6; // hard disk
pBuffer[1] = hdf[unit].cylinders; // cyl count
pBuffer[3] = hdf[unit].heads; // head count
pBuffer[6] = hdf[unit].sectors; // sectors per track
// FIXME - can get serial no from card itself.
memcpy((char*)&pBuffer[10], "iMTSiMiniMHgrafdli e", 20); // serial number - byte swapped
memcpy((char*)&pBuffer[23], ".100 ", 8); // firmware version - byte swapped
p = (char*)&pBuffer[27];
// FIXME - likewise the model name can be fetched from the card.
if (hdf[unit].type & HDF_SYNTHRDB) {
memcpy(p, "DON'T ", 40);
p += 8;
memcpy(p, "REPARTITION! ", 16);
} else {
memcpy(p, "YAQUBE ", 40); // model name - byte swapped
p += 8;
if (hardfile[unit]->long_name[0]) {
for (i = 0; (x = hardfile[unit]->long_name[i]) && i < 16; i++) // copy file name as model name
p[i] = x;
} else {
memcpy(p, hardfile[unit]->name, 8); // copy file name as model name
}
}
SwapBytes((char*)&pBuffer[27], 40);
break;
case HDF_CARD:
case HDF_CARDPART0:
case HDF_CARDPART1:
case HDF_CARDPART2:
case HDF_CARDPART3:
pBuffer[0] = 1 << 6; // hard disk
pBuffer[1] = hdf[unit].cylinders; // cyl count
pBuffer[3] = hdf[unit].heads; // head count
pBuffer[6] = hdf[unit].sectors; // sectors per track
// FIXME - can get serial no from card itself.
memcpy((char*)&pBuffer[10], "iMTSiMiniMSg0D ", 20); // serial number - byte swapped
pBuffer[23]+=hdf[unit].type-HDF_CARD;
memcpy((char*)&pBuffer[23], ".100 ", 8); // firmware version - byte swapped
p = (char*)&pBuffer[27];
// FIXME - likewise the model name can be fetched from the card.
memcpy(p, "YAQUBE ", 40); // model name - byte swapped
p += 8;
if (hdf[unit].type==HDF_CARD)
memcpy(p, "SD/MMC Card", 11); // copy file name as model name
else {
memcpy(p, "Card Part 1", 11); // copy file name as model name
p[10]+=hdf[unit].partition;
}
SwapBytes((char*)&pBuffer[27], 40);
break;
}
pBuffer[47] = 0x8010; // maximum sectors per block in Read/Write Multiple command
pBuffer[53] = 1;
pBuffer[54] = hdf[unit].cylinders;
pBuffer[55] = hdf[unit].heads;
pBuffer[56] = hdf[unit].sectors;
pBuffer[57] = (unsigned short)total_sectors;
pBuffer[58] = (unsigned short)(total_sectors >> 16);
}
// chs2lba()
unsigned long chs2lba(unsigned short cylinder, unsigned char head, unsigned short sector, unsigned char unit)
{
return(cylinder * hdf[unit].heads + head) * hdf[unit].sectors + sector - 1;
}
// WriteTaskFile()
void WriteTaskFile(unsigned char error, unsigned char sector_count, unsigned char sector_number, unsigned char cylinder_low, unsigned char cylinder_high, unsigned char drive_head)
{
EnableFpga();
SPI(CMD_IDE_REGS_WR); // write task file registers command
SPI(0x00);
SPI(0x00); // dummy
SPI(0x00);
SPI(0x00); // dummy
SPI(0x00);
SPI(0x00); // dummy
SPI(0x00);
SPI(0x00);
SPI(error); // error
SPI(0x00);
SPI(sector_count); // sector count
SPI(0x00);
SPI(sector_number); // sector number
SPI(0x00);
SPI(cylinder_low); // cylinder low
SPI(0x00);
SPI(cylinder_high); // cylinder high
SPI(0x00);
SPI(drive_head); // drive/head
DisableFpga();
}
// WriteStatus()
void WriteStatus(unsigned char status)
{
EnableFpga();
SPI(CMD_IDE_STATUS_WR);
SPI(status);
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
DisableFpga();
}
// ATA_Recalibrate()
static inline void ATA_Recalibrate(unsigned char* tfr, unsigned char unit)
{
// Recalibrate 0x10-0x1F (class 3 command: no data)
hdd_debugf("IDE%d: Recalibrate", unit);
WriteTaskFile(0, 0, 1, 0, 0, tfr[6] & 0xF0);
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
// ATA_Diagnostic()
static inline void ATA_Diagnostic(unsigned char* tfr)
{
// Execute Drive Diagnostic (0x90)
hdd_debugf("IDE: Drive Diagnostic");
WriteTaskFile(1, 0, 0, 0, 0, 0);
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
// ATA_IdentifyDevice()
static inline void ATA_IdentifyDevice(unsigned char* tfr, unsigned char unit, unsigned short* id)
{
int i;
// Identify Device (0xec)
hdd_debugf("IDE%d: Identify Device", unit);
IdentifyDevice(id, unit);
WriteTaskFile(0, tfr[2], tfr[3], tfr[4], tfr[5], tfr[6]);
WriteStatus(IDE_STATUS_RDY); // pio in (class 1) command type
EnableFpga();
SPI(CMD_IDE_DATA_WR); // write data command
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
for (i = 0; i < 256; i++) {
SPI((unsigned char)id[i]);
SPI((unsigned char)(id[i] >> 8));
}
DisableFpga();
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
// ATA_Initialize()
static inline void ATA_Initialize(unsigned char* tfr, unsigned char unit)
{
// Initialize Device Parameters (0x91)
hdd_debugf("Initialize Device Parameters");
hdd_debugf("IDE%d: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X", unit, tfr[0], tfr[1], tfr[2], tfr[3], tfr[4], tfr[5], tfr[6], tfr[7]);
WriteTaskFile(0, tfr[2], tfr[3], tfr[4], tfr[5], tfr[6]);
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
// ATA_SetMultipleMode()
static inline void ATA_SetMultipleMode(unsigned char* tfr, unsigned char unit)
{
// Set Multiple Mode (0xc6)
hdd_debugf("Set Multiple Mode");
hdd_debugf("IDE%d: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X", unit, tfr[0], tfr[1], tfr[2], tfr[3], tfr[4], tfr[5], tfr[6], tfr[7]);
hdf[unit].sectors_per_block = tfr[2];
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
// ATA_ReadSectors()
static inline void ATA_ReadSectors(unsigned char* tfr, unsigned short sector, unsigned short cylinder, unsigned char head, unsigned char unit, unsigned short sector_count, unsigned char multiple)
{
// Read Sectors (0x20)
long lba;
int i;
int block_count;
lba=chs2lba(cylinder, head, sector, unit);
hdd_debugf("IDE%d: read %d.%d.%d, %d", unit, cylinder, head, sector, sector_count);
while (sector_count)
{
block_count = multiple ? sector_count : 1;
if (multiple && block_count > hdf[unit].sectors_per_block)
block_count = hdf[unit].sectors_per_block;
WriteStatus(IDE_STATUS_RDY); // pio in (class 1) command type
while (!(GetFPGAStatus() & CMD_IDECMD)); // wait for empty sector buffer
WriteStatus(IDE_STATUS_IRQ);
switch(hdf[unit].type)
{
case HDF_FILE | HDF_SYNTHRDB:
case HDF_FILE:
if (hdf[unit].file.size)
{
int blk=block_count;
// Deal with FakeRDB and the potential for a read_multiple to cross the boundary into actual data.
while(blk && (lba+hdf[unit].offset<0 || ((unit == 0) && (hdf[unit].type == HDF_FILE) && (lba == 0)))) {
if ((lba+hdf[unit].offset) < 0)
FakeRDB(unit,lba);
else // Adjust flags of a real RDB if present. Is this necessary? If it worked before it was accidental due to malformed "if"
{
HardFileSeek(&hdf[unit], lba + hdf[unit].offset);
// read sector into buffer
FileRead(&hdf[unit].file, sector_buffer);
FileSeek(&hdf[unit].file, 1, SEEK_CUR); // next sector
// adjust checksum by the difference between old and new flag value
struct RigidDiskBlock *rdb = (struct RigidDiskBlock *)sector_buffer;
rdb->rdb_ChkSum = SWAP(SWAP(rdb->rdb_ChkSum) + SWAP(rdb->rdb_Flags) - 0x12);
// adjust flags
rdb->rdb_Flags=SWAP(0x12);
}
EnableFpga();
spi8(CMD_IDE_DATA_WR); // write data command
spi_n(0x00, 5);
spi_block_write(sector_buffer);
DisableFpga();
++lba;
--blk;
}
if(blk) // Any blocks left?
{
HardFileSeek(&hdf[unit], lba + hdf[unit].offset);
FileReadEx(&hdf[unit].file, 0, blk); // NULL enables direct transfer to the FPGA
lba+=blk;
}
}
else
WriteStatus(IDE_STATUS_RDY|IDE_STATUS_ERR);
break;
case HDF_CARD:
case HDF_CARDPART0:
case HDF_CARDPART1:
case HDF_CARDPART2:
case HDF_CARDPART3:
MMC_ReadMultiple(lba+hdf[unit].offset,0,block_count);
lba+=block_count;
break;
}
/* Advance CHS address - address of last read remains. */
while(block_count--)
{
if (sector_count!=1)
{
if (sector == hdf[unit].sectors)
{
sector = 1;
head++;
if (head == hdf[unit].heads)
{
head = 0;
cylinder++;
}
}
else
sector++;
}
--sector_count;
}
/* Update task file with CHS address */
WriteTaskFile(0, tfr[2], sector, cylinder, (cylinder >> 8), (tfr[6] & 0xF0) | head);
}
WriteStatus(IDE_STATUS_END);
}
// ATA_WriteSectors()
static inline void ATA_WriteSectors(unsigned char* tfr, unsigned short sector, unsigned short cylinder, unsigned char head, unsigned char unit, unsigned short sector_count, char multiple)
{
unsigned short i;
unsigned short block_count;
long lba=chs2lba(cylinder, head, sector, unit);
// write sectors
WriteStatus(IDE_STATUS_REQ); // pio out (class 2) command type
hdd_debugf("IDE%d: write %d.%d.%d, %d", unit, cylinder, head, sector, sector_count);
//if (hdf[unit].type>=HDF_CARDPART0)
lba+=hdf[unit].offset;
if (hdf[unit].file.size) {
// File size will be 0 in direct card modes
HardFileSeek(&hdf[unit], (lba>-1) ? lba : 0);
}
while (sector_count) {
block_count = multiple ? sector_count : 1;
if (multiple && block_count > hdf[unit].sectors_per_block)
block_count = hdf[unit].sectors_per_block;
while(block_count--)
{
while (!(GetFPGAStatus() & CMD_IDEDAT)); // wait for full write buffer
EnableFpga();
SPI(CMD_IDE_DATA_RD); // read data command
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
for (i = 0; i < 512; i++) sector_buffer[i] = SPI(0xFF);
DisableFpga();
switch(hdf[unit].type) {
case HDF_FILE | HDF_SYNTHRDB:
case HDF_FILE:
if (hdf[unit].file.size && (lba>-1)) {
// Don't attempt to write to fake RDB
FileWrite(&hdf[unit].file, sector_buffer);
FileSeek(&hdf[unit].file, 1, SEEK_CUR);
}
lba++;
break;
case HDF_CARD:
case HDF_CARDPART0:
case HDF_CARDPART1:
case HDF_CARDPART2:
case HDF_CARDPART3:
MMC_Write(lba,sector_buffer);
lba++;
break;
}
// decrease sector count
if (sector_count!=1) {
if (sector == hdf[unit].sectors) {
sector = 1;
head++;
if (head == hdf[unit].heads) {
head = 0;
cylinder++;
}
} else {
sector++;
}
}
sector_count--; // decrease sector count
}
WriteTaskFile(0, tfr[2], sector, (unsigned char)cylinder, (unsigned char)(cylinder >> 8), (tfr[6] & 0xF0) | head);
if (sector_count)
WriteStatus(IDE_STATUS_IRQ);
else
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ);
}
}
// HandleHDD()
void HandleHDD(unsigned char c1, unsigned char c2)
{
unsigned short id[256];
unsigned char tfr[8];
unsigned short i;
unsigned short sector;
unsigned short cylinder;
unsigned char head;
unsigned char unit;
unsigned short sector_count;
if (c1 & CMD_IDECMD) {
DISKLED_ON;
EnableFpga();
SPI(CMD_IDE_REGS_RD); // read task file registers
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
for (i = 0; i < 8; i++) {
SPI(0);
tfr[i] = SPI(0);
}
DisableFpga();
unit = tfr[6] & 0x10 ? 1 : 0; // master/slave selection
if (0) hdd_debugf("IDE%d: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X", unit, tfr[0], tfr[1], tfr[2], tfr[3], tfr[4], tfr[5], tfr[6], tfr[7]);
if (!hardfile[unit]->present) {
hdd_debugf("IDE%d: not present", unit);
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ | IDE_STATUS_ERR);
DISKLED_OFF;
return;
}
sector = tfr[3];
cylinder = tfr[4] | (tfr[5] << 8);
head = tfr[6] & 0x0F;
sector_count = tfr[2];
if (sector_count == 0) sector_count = 0x100;
if ((tfr[7] & 0xF0) == ACMD_RECALIBRATE) {
ATA_Recalibrate(tfr, unit);
} else if (tfr[7] == ACMD_DIAGNOSTIC) {
ATA_Diagnostic(tfr);
} else if (tfr[7] == ACMD_IDENTIFY_DEVICE) {
ATA_IdentifyDevice(tfr, unit, id);
} else if (tfr[7] == ACMD_INITIALIZE_DEVICE_PARAMETERS) {
ATA_Initialize(tfr, unit);
} else if (tfr[7] == ACMD_SET_MULTIPLE_MODE) {
ATA_SetMultipleMode(tfr, unit);
} else if (tfr[7] == ACMD_READ_SECTORS) {
ATA_ReadSectors(tfr, sector, cylinder, head, unit, sector_count,0);
} else if (tfr[7] == ACMD_READ_MULTIPLE) {
ATA_ReadSectors(tfr, sector, cylinder, head, unit, sector_count,1);
} else if (tfr[7] == ACMD_WRITE_SECTORS) {
ATA_WriteSectors(tfr, sector, cylinder, head, unit, sector_count,0);
} else if (tfr[7] == ACMD_WRITE_MULTIPLE) {
ATA_WriteSectors(tfr, sector, cylinder, head, unit, sector_count,1);
} else {
hdd_debugf("Unknown ATA command");
hdd_debugf("IDE%d: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X", unit, tfr[0], tfr[1], tfr[2], tfr[3], tfr[4], tfr[5], tfr[6], tfr[7]);
WriteTaskFile(0x04, tfr[2], tfr[3], tfr[4], tfr[5], tfr[6]);
WriteStatus(IDE_STATUS_END | IDE_STATUS_IRQ | IDE_STATUS_ERR);
}
DISKLED_OFF;
}
}
// GetHardfileGeometry()
// this function comes from WinUAE, should return the same CHS as WinUAE
void GetHardfileGeometry(hdfTYPE *pHDF)
{
unsigned long total=0;
unsigned long i, head, cyl, spt;
unsigned long sptt[] = { 63, 127, 255, 0 };
unsigned long cyllimit=65535;
switch(pHDF->type) {
case (HDF_FILE | HDF_SYNTHRDB):
if (pHDF->file.size == 0) return;
// For WinUAE generated hardfiles we have a fixed sectorspertrack of 32, number of heads and cylinders are variable.
// Make a first guess based on 1 head, then refine that guess until the geometry gives a plausible number of
// cylinders and also has the correct number of blocks.
total = pHDF->file.size / 512;
pHDF->sectors = 32;
head=1;
cyl = total/32;
cyllimit-=1; // Need headroom for an RDB
while(head<16 && (cyl>cyllimit || (head*cyl*32)!=total))
{
++head;
cyl=total/(32*head);
}
pHDF->heads = head;
pHDF->cylinders = cyl+1; // Add a cylinder for the fake RDB.
if ((head*cyl*32)==total) // Does the geometry match the size of the underlying hard file?
return;
// If not, fall back to regular hardfile geometry aproximations...
break;
case HDF_FILE:
if (pHDF->file.size == 0) return;
total = pHDF->file.size / 512;
break;
case HDF_CARD:
total = MMC_GetCapacity(); // GetCapacity returns number of blocks, not bytes.
break;
case HDF_CARDPART0:
case HDF_CARDPART1:
case HDF_CARDPART2:
case HDF_CARDPART3:
total = partitions[pHDF->partition].sectors;
break;
default:
break;
}
for (i = 0; sptt[i] != 0; i++) {
spt = sptt[i];
for (head = 4; head <= 16; head++) {
cyl = total / (head * spt);
if (total <= 1024 * 1024) {
if (cyl <= 1023) break;
} else {
if (cyl < 16383)
break;
if (cyl < 32767 && head >= 5)
break;
if (cyl <= cyllimit) // Should there some head constraint here?
break;
}
}
if (head <= 16) break;
}
if(pHDF->type == (HDF_FILE | HDF_SYNTHRDB))
++cyl; // Add an extra cylinder for the fake RDB
pHDF->cylinders = (unsigned short)cyl;
pHDF->heads = (unsigned short)head;
pHDF->sectors = (unsigned short)spt;
}
// BuildHardfileIndex()
void BuildHardfileIndex(hdfTYPE *pHDF)
{
// builds index to speed up hard file seek
fileTYPE *file = &pHDF->file;
unsigned long *index = pHDF->index;
unsigned long i;
unsigned long j;
pHDF->index_size = 16; // indexing size
j = 1 << pHDF->index_size;
i = pHDF->file.size >> 10; // divided by index table size (1024)
while (j < i) {
// find greater or equal power of two
j <<= 1;
pHDF->index_size++;
}
for (i = 0; i < file->size; i += j) {
FileSeek(file, i >> 9, SEEK_SET); // FileSeek seeks in 512-byte sectors
*index++ = file->cluster;
}
}
// HardFileSeek()
unsigned char HardFileSeek(hdfTYPE *pHDF, unsigned long lba)
{
if ((pHDF->file.sector ^ lba) & cluster_mask) {
// different clusters
if ((pHDF->file.sector > lba) || ((pHDF->file.sector ^ lba) & (cluster_mask << (fat32 ? 7 : 8)))) {
// 7: 128 FAT32 links per sector, 8: 256 FAT16 links per sector
// requested cluster lies before current pointer position or in different FAT sector
pHDF->file.cluster = pHDF->index[lba >> (pHDF->index_size - 9)];// minus 9 because lba is in 512-byte sectors
pHDF->file.sector = lba & (-1 << (pHDF->index_size - 9));
}
}
return FileSeek(&pHDF->file, lba, SEEK_SET);
}
// OpenHardfile()
unsigned char OpenHardfile(unsigned char unit)
{
unsigned long time;
char filename[12];
switch(hardfile[unit]->enabled) {
case HDF_FILE | HDF_SYNTHRDB:
case HDF_FILE:
hdf[unit].type=hardfile[unit]->enabled;
strncpy(filename, hardfile[unit]->name, 8);
strcpy(&filename[8], "HDF");
if (filename[0]) {
if (FileOpen(&hdf[unit].file, filename)) {
GetHardfileGeometry(&hdf[unit]);
hdd_debugf("HARDFILE %d:", unit);
hdd_debugf("file: \"%.8s.%.3s\"", hdf[unit].file.name, &hdf[unit].file.name[8]);
hdd_debugf("size: %lu (%lu MB)", hdf[unit].file.size, hdf[unit].file.size >> 20);
hdd_debugf("CHS: %u.%u.%u", hdf[unit].cylinders, hdf[unit].heads, hdf[unit].sectors);
hdd_debugf(" (%lu MB)", ((((unsigned long) hdf[unit].cylinders) * hdf[unit].heads * hdf[unit].sectors) >> 11));
time = GetTimer(0);
BuildHardfileIndex(&hdf[unit]);
time = GetTimer(0) - time;
hdd_debugf("Hardfile indexed in %lu ms", time >> 16);
if (hardfile[unit]->enabled & HDF_SYNTHRDB) {
hdf[unit].offset=-(hdf[unit].heads*hdf[unit].sectors);
} else {
hdf[unit].offset=0;
}
hardfile[unit]->present = 1;
return 1;
}
}
break;
case HDF_CARD:
hdf[unit].type=HDF_CARD;
hardfile[unit]->present = 1;
hdf[unit].file.size=0;
hdf[unit].offset=0;
GetHardfileGeometry(&hdf[unit]);
return 1;
break;
case HDF_CARDPART0:
case HDF_CARDPART1:
case HDF_CARDPART2:
case HDF_CARDPART3:
hdf[unit].type=hardfile[unit]->enabled;
hdf[unit].partition=hdf[unit].type-HDF_CARDPART0;
hardfile[unit]->present = 1;
hdf[unit].file.size=0;
hdf[unit].offset=partitions[hdf[unit].partition].startlba;
GetHardfileGeometry(&hdf[unit]);
return 1;
break;
}
hardfile[unit]->present = 0;
return 0;
}
// GetHDFFileType()
unsigned char GetHDFFileType(char *filename)
{
if (FileOpen(&rdbfile,filename)) {
int i;
for(i=0;i<16;++i) {
FileRead(&rdbfile,sector_buffer);
FileSeek(&rdbfile,512,SEEK_CUR);
if (sector_buffer[0]=='R' && sector_buffer[1]=='D' && sector_buffer[2]=='S' && sector_buffer[3]=='K')
return(HDF_FILETYPE_RDB);
if (sector_buffer[0]=='D' && sector_buffer[1]=='O' && sector_buffer[2]=='S')
return(HDF_FILETYPE_DOS);
if (sector_buffer[0]=='P' && sector_buffer[1]=='F' && sector_buffer[2]=='S')
return(HDF_FILETYPE_DOS);
if (sector_buffer[0]=='S' && sector_buffer[1]=='F' && sector_buffer[2]=='S')
return(HDF_FILETYPE_DOS);
}
return(HDF_FILETYPE_UNKNOWN);
}
return(HDF_FILETYPE_NOTFOUND);
}