From 089656ac89f4c3e883153d624c5d194387cf504e Mon Sep 17 00:00:00 2001 From: Krzysztof Findeisen Date: Mon, 26 Aug 2024 12:55:03 -0700 Subject: [PATCH] Remove MockApPipe.yaml and all its dependencies. --- python/lsst/ap/verify/testPipeline.py | 676 -------------------------- tests/MockApPipe.yaml | 99 ---- tests/test_testPipeline.py | 423 ---------------- ups/ap_verify.table | 3 +- 4 files changed, 1 insertion(+), 1200 deletions(-) delete mode 100644 python/lsst/ap/verify/testPipeline.py delete mode 100644 tests/MockApPipe.yaml delete mode 100644 tests/test_testPipeline.py diff --git a/python/lsst/ap/verify/testPipeline.py b/python/lsst/ap/verify/testPipeline.py deleted file mode 100644 index d0d59d33..00000000 --- a/python/lsst/ap/verify/testPipeline.py +++ /dev/null @@ -1,676 +0,0 @@ -# -# This file is part of ap_verify. -# -# Developed for the LSST Data Management System. -# This product includes software developed by the LSST Project -# (http://www.lsst.org). -# See the COPYRIGHT file at the top-level directory of this distribution -# for details of code ownership. -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see . -# - - -# These classes exist only to be included in a mock pipeline, and don't need -# to be public for that. -__all__ = [] - -import astropy.table -import numpy as np -import pandas - -import lsst.geom as geom -import lsst.afw.image as afwImage -import lsst.afw.math as afwMath -import lsst.afw.table as afwTable -from lsst.ap.association import (LoadDiaCatalogsConfig, TransformDiaSourceCatalogConfig, - DiaPipelineConfig, FilterDiaSourceCatalogConfig) -from lsst.pipe.base import PipelineTask, Struct -from lsst.ip.isr import IsrTaskConfig -from lsst.ip.diffim import (GetTemplateConfig, AlardLuptonSubtractConfig, - DetectAndMeasureConfig, SpatiallySampledMetricsConfig) -from lsst.pipe.tasks.characterizeImage import CharacterizeImageConfig -from lsst.pipe.tasks.calibrate import CalibrateConfig -from lsst.meas.transiNet import RBTransiNetConfig - - -class MockLoadDiaCatalogsTask(PipelineTask): - """A do-nothing substitute for LoadDiaCatalogsTask. - """ - ConfigClass = LoadDiaCatalogsConfig - _DefaultName = "notLoadDiaCatalogs" - - def run(self, regionTime): - """Produce preloaded DiaSource and DiaObject outputs with no processing. - - Parameters - ---------- - regionTime : `lsst.pipe.base.utils.RegionTimeInfo` - A serializable container for a sky region and timespan. - - Returns - ------- - result : `lsst.pipe.base.Struct` - Results struct with components. - - - ``diaObjects`` : Complete set of DiaObjects covering the input - exposure padded by ``pixelMargin``. DataFrame is indexed by - the ``diaObjectId`` column. (`pandas.DataFrame`) - - ``diaSources`` : Complete set of DiaSources covering the input - exposure padded by ``pixelMargin``. DataFrame is indexed by - ``diaObjectId``, ``band``, ``diaSourceId`` columns. - (`pandas.DataFrame`) - - ``diaForcedSources`` : Complete set of forced photometered fluxes - on the past 12 months of difference images at DiaObject locations. - """ - return Struct(diaObjects=pandas.DataFrame(), - diaSources=pandas.DataFrame(), - diaForcedSources=pandas.DataFrame(), - ) - - -class MockIsrTask(PipelineTask): - """A do-nothing substitute for IsrTask. - """ - ConfigClass = IsrTaskConfig - _DefaultName = "notIsr" - - def run(self, ccdExposure, *, camera=None, bias=None, linearizer=None, - crosstalk=None, crosstalkSources=None, - dark=None, flat=None, ptc=None, bfKernel=None, bfGains=None, defects=None, - fringes=Struct(fringes=None), opticsTransmission=None, filterTransmission=None, - sensorTransmission=None, atmosphereTransmission=None, - detectorNum=None, strayLightData=None, illumMaskedImage=None, - deferredCharge=None, - ): - """Accept ISR inputs, and produce ISR outputs with no processing. - - Parameters - ---------- - ccdExposure : `lsst.afw.image.Exposure` - The raw exposure that is to be run through ISR. The - exposure is modified by this method. - camera : `lsst.afw.cameraGeom.Camera`, optional - The camera geometry for this exposure. Required if - one or more of ``ccdExposure``, ``bias``, ``dark``, or - ``flat`` does not have an associated detector. - bias : `lsst.afw.image.Exposure`, optional - Bias calibration frame. - linearizer : `lsst.ip.isr.linearize.LinearizeBase`, optional - Functor for linearization. - crosstalk : `lsst.ip.isr.crosstalk.CrosstalkCalib`, optional - Calibration for crosstalk. - crosstalkSources : `list`, optional - List of possible crosstalk sources. - dark : `lsst.afw.image.Exposure`, optional - Dark calibration frame. - flat : `lsst.afw.image.Exposure`, optional - Flat calibration frame. - ptc : `lsst.ip.isr.PhotonTransferCurveDataset`, optional - Photon transfer curve dataset, with, e.g., gains - and read noise. - bfKernel : `numpy.ndarray`, optional - Brighter-fatter kernel. - bfGains : `dict` of `float`, optional - Gains used to override the detector's nominal gains for the - brighter-fatter correction. A dict keyed by amplifier name for - the detector in question. - defects : `lsst.ip.isr.Defects`, optional - List of defects. - fringes : `lsst.pipe.base.Struct`, optional - Struct containing the fringe correction data, with - elements: - - ``fringes``: fringe calibration frame (`afw.image.Exposure`) - - ``seed``: random seed derived from the ccdExposureId for random - number generator (`uint32`) - opticsTransmission: `lsst.afw.image.TransmissionCurve`, optional - A ``TransmissionCurve`` that represents the throughput of the - optics, to be evaluated in focal-plane coordinates. - filterTransmission : `lsst.afw.image.TransmissionCurve` - A ``TransmissionCurve`` that represents the throughput of the - filter itself, to be evaluated in focal-plane coordinates. - sensorTransmission : `lsst.afw.image.TransmissionCurve` - A ``TransmissionCurve`` that represents the throughput of the - sensor itself, to be evaluated in post-assembly trimmed detector - coordinates. - atmosphereTransmission : `lsst.afw.image.TransmissionCurve` - A ``TransmissionCurve`` that represents the throughput of the - atmosphere, assumed to be spatially constant. - detectorNum : `int`, optional - The integer number for the detector to process. - isGen3 : bool, optional - Flag this call to run() as using the Gen3 butler environment. - strayLightData : `object`, optional - Opaque object containing calibration information for stray-light - correction. If `None`, no correction will be performed. - illumMaskedImage : `lsst.afw.image.MaskedImage`, optional - Illumination correction image. - - Returns - ------- - result : `lsst.pipe.base.Struct` - Result struct with components: - - ``exposure`` - The fully ISR corrected exposure (`afw.image.Exposure`). - ``outputExposure`` - An alias for ``exposure`` (`afw.image.Exposure`). - ``ossThumb`` - Thumbnail image of the exposure after overscan subtraction - (`numpy.ndarray`). - ``flattenedThumb`` - Thumbnail image of the exposure after flat-field correction - (`numpy.ndarray`). - - ``outputStatistics`` : mapping [`str`] - Values of the additional statistics calculated. - """ - return Struct(exposure=afwImage.ExposureF(), - outputExposure=afwImage.ExposureF(), - ossThumb=np.empty((1, 1)), - flattenedThumb=np.empty((1, 1)), - preInterpExposure=afwImage.ExposureF(), - outputOssThumbnail=np.empty((1, 1)), - outputFlattenedThumbnail=np.empty((1, 1)), - outputStatistics={}, - ) - - -class MockCharacterizeImageTask(PipelineTask): - """A do-nothing substitute for CharacterizeImageTask. - """ - ConfigClass = CharacterizeImageConfig - _DefaultName = "notCharacterizeImage" - - def __init__(self, refObjLoader=None, schema=None, **kwargs): - super().__init__(**kwargs) - self.outputSchema = afwTable.SourceCatalog() - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - if 'idGenerator' not in inputs.keys(): - inputs['idGenerator'] = self.config.idGenerator.apply(butlerQC.quantum.dataId) - outputs = self.run(**inputs) - butlerQC.put(outputs, outputRefs) - - def run(self, exposure, background=None, idGenerator=None): - """Produce characterization outputs with no processing. - - Parameters - ---------- - exposure : `lsst.afw.image.Exposure` - Exposure to characterize. - background : `lsst.afw.math.BackgroundList`, optional - Initial model of background already subtracted from exposure. - idGenerator : `lsst.meas.base.IdGenerator`, optional - Object that generates source IDs and provides random number - generator seeds. - - Returns - ------- - result : `lsst.pipe.base.Struct` - Struct containing these fields: - - ``characterized`` - Characterized exposure (`lsst.afw.image.Exposure`). - ``sourceCat`` - Detected sources (`lsst.afw.table.SourceCatalog`). - ``backgroundModel`` - Model of background subtracted from exposure (`lsst.afw.math.BackgroundList`) - ``psfCellSet`` - Spatial cells of PSF candidates (`lsst.afw.math.SpatialCellSet`) - """ - # Can't persist empty BackgroundList; DM-33714 - bg = afwMath.BackgroundMI(geom.Box2I(geom.Point2I(0, 0), geom.Point2I(16, 16)), - afwImage.MaskedImageF(16, 16)) - return Struct(characterized=exposure, - sourceCat=afwTable.SourceCatalog(), - backgroundModel=afwMath.BackgroundList(bg), - psfCellSet=afwMath.SpatialCellSet(exposure.getBBox(), 10), - ) - - -class MockCalibrateTask(PipelineTask): - """A do-nothing substitute for CalibrateTask. - """ - ConfigClass = CalibrateConfig - _DefaultName = "notCalibrate" - - def __init__(self, astromRefObjLoader=None, - photoRefObjLoader=None, icSourceSchema=None, - initInputs=None, **kwargs): - super().__init__(**kwargs) - self.outputSchema = afwTable.SourceCatalog() - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - inputs['idGenerator'] = self.config.idGenerator.apply(butlerQC.quantum.dataId) - - if self.config.doAstrometry: - inputs.pop('astromRefCat') - if self.config.doPhotoCal: - inputs.pop('photoRefCat') - - outputs = self.run(**inputs) - - if self.config.doWriteMatches and self.config.doAstrometry: - normalizedMatches = afwTable.packMatches(outputs.astromMatches) - if self.config.doWriteMatchesDenormalized: - # Just need an empty BaseCatalog with a valid schema. - outputs.matchesDenormalized = afwTable.BaseCatalog(outputs.outputCat.schema) - outputs.matches = normalizedMatches - butlerQC.put(outputs, outputRefs) - - def run(self, exposure, background=None, - icSourceCat=None, idGenerator=None): - """Produce calibration outputs with no processing. - - Parameters - ---------- - exposure : `lsst.afw.image.Exposure` - Exposure to calibrate. - background : `lsst.afw.math.BackgroundList`, optional - Background model already subtracted from exposure. - icSourceCat : `lsst.afw.table.SourceCatalog`, optional - A SourceCatalog from CharacterizeImageTask from which we can copy some fields. - idGenerator : `lsst.meas.base.IdGenerator`, optional - Object that generates source IDs and provides random number - generator seeds. - - Returns - ------- - result : `lsst.pipe.base.Struct` - Struct containing these fields: - - ``outputExposure`` - Calibrated science exposure with refined WCS and PhotoCalib - (`lsst.afw.image.Exposure`). - ``outputBackground`` - Model of background subtracted from exposure - (`lsst.afw.math.BackgroundList`). - ``outputCat`` - Catalog of measured sources (`lsst.afw.table.SourceCatalog`). - ``astromMatches`` - List of source/refObj matches from the astrometry solver - (`list` [`lsst.afw.table.ReferenceMatch`]). - """ - # Can't persist empty BackgroundList; DM-33714 - bg = afwMath.BackgroundMI(geom.Box2I(geom.Point2I(0, 0), geom.Point2I(16, 16)), - afwImage.MaskedImageF(16, 16)) - return Struct(outputExposure=exposure, - outputBackground=afwMath.BackgroundList(bg), - outputCat=afwTable.SourceCatalog(), - astromMatches=[], - ) - - -class MockGetTemplateTask(PipelineTask): - """A do-nothing substitute for GetTemplateTask. - """ - ConfigClass = GetTemplateConfig - _DefaultName = "notGetTemplate" - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - # Mock GetTemplateTask.getOverlappingExposures - results = Struct(coaddExposures=[], - dataIds=[], - ) - inputs["coaddExposures"] = results.coaddExposures - inputs["dataIds"] = results.dataIds - outputs = self.run(**inputs) - butlerQC.put(outputs, outputRefs) - - def run(self, coaddExposures, bbox, wcs, dataIds, **kwargs): - """Warp coadds from multiple tracts to form a template for image diff. - - Where the tracts overlap, the resulting template image is averaged. - The PSF on the template is created by combining the CoaddPsf on each - template image into a meta-CoaddPsf. - - Parameters - ---------- - coaddExposures : `list` of `lsst.afw.image.Exposure` - Coadds to be mosaicked - bbox : `lsst.geom.Box2I` - Template Bounding box of the detector geometry onto which to - resample the coaddExposures - wcs : `lsst.afw.geom.SkyWcs` - Template WCS onto which to resample the coaddExposures - dataIds : `list` of `lsst.daf.butler.DataCoordinate` - Record of the tract and patch of each coaddExposure. - **kwargs - Any additional keyword parameters. - - Returns - ------- - result : `lsst.pipe.base.Struct` containing - - ``template`` : a template coadd exposure assembled out of patches - """ - return Struct(template=afwImage.ExposureF(), - ) - - -class MockAlardLuptonSubtractTask(PipelineTask): - """A do-nothing substitute for AlardLuptonSubtractTask. - """ - ConfigClass = AlardLuptonSubtractConfig - _DefaultName = "notAlardLuptonSubtract" - - def run(self, template, science, sources, finalizedPsfApCorrCatalog=None, visitSummary=None): - """PSF match, subtract, and decorrelate two images. - - Parameters - ---------- - template : `lsst.afw.image.ExposureF` - Template exposure, warped to match the science exposure. - science : `lsst.afw.image.ExposureF` - Science exposure to subtract from the template. - sources : `lsst.afw.table.SourceCatalog` - Identified sources on the science exposure. This catalog is used to - select sources in order to perform the AL PSF matching on stamp - images around them. - finalizedPsfApCorrCatalog : `lsst.afw.table.ExposureCatalog`, optional - Exposure catalog with finalized psf models and aperture correction - maps to be applied if config.doApplyFinalizedPsf=True. Catalog - uses the detector id for the catalog id, sorted on id for fast - lookup. Deprecated in favor of ``visitSummary``, and will be - removed after v26. - visitSummary : `lsst.afw.table.ExposureCatalog`, optional - Exposure catalog with external calibrations to be applied. Catalog - uses the detector id for the catalog id, sorted on id for fast - lookup. Ignored (for temporary backwards compatibility) if - ``finalizedPsfApCorrCatalog`` is provided. - - Returns - ------- - results : `lsst.pipe.base.Struct` - ``difference`` : `lsst.afw.image.ExposureF` - Result of subtracting template and science. - ``matchedTemplate`` : `lsst.afw.image.ExposureF` - Warped and PSF-matched template exposure. - ``backgroundModel`` : `lsst.afw.math.Function2D` - Background model that was fit while solving for the - PSF-matching kernel - ``psfMatchingKernel`` : `lsst.afw.math.Kernel` - Kernel used to PSF-match the convolved image. - """ - return Struct(difference=afwImage.ExposureF(), - matchedTemplate=afwImage.ExposureF(), - backgroundModel=afwMath.NullFunction2D(), - psfMatchingKernel=afwMath.FixedKernel(), - ) - - -class MockDetectAndMeasureConfig(DetectAndMeasureConfig): - - def setDefaults(self): - super().setDefaults() - # Avoid delegating to lsst.obs.base.Instrument specialization for the - # data ID packing algorithm to use, since test code often does not use a - # real Instrument in its data IDs. - self.idGenerator.packer.name = "observation" - - -class MockDetectAndMeasureTask(PipelineTask): - """A do-nothing substitute for DetectAndMeasureTask. - """ - ConfigClass = MockDetectAndMeasureConfig - _DefaultName = "notDetectAndMeasure" - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.outputSchema = afwTable.SourceCatalog() - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - idFactory = afwTable.IdFactory.makeSimple() - - outputs = self.run(inputs['science'], - inputs['matchedTemplate'], - inputs['difference'], - idFactory=idFactory) - butlerQC.put(outputs, outputRefs) - - def run(self, science, matchedTemplate, difference, - idFactory=None): - """Detect and measure sources on a difference image. - - Parameters - ---------- - science : `lsst.afw.image.ExposureF` - Science exposure that the template was subtracted from. - matchedTemplate : `lsst.afw.image.ExposureF` - Warped and PSF-matched template that was used produce the - difference image. - difference : `lsst.afw.image.ExposureF` - Result of subtracting template from the science image. - idFactory : `lsst.afw.table.IdFactory`, optional - Generator object to assign ids to detected sources in the difference image. - - Returns - ------- - results : `lsst.pipe.base.Struct` - ``subtractedMeasuredExposure`` : `lsst.afw.image.ExposureF` - Subtracted exposure with detection mask applied. - ``diaSources`` : `lsst.afw.table.SourceCatalog` - The catalog of detected sources. - """ - return Struct(subtractedMeasuredExposure=difference, - diaSources=afwTable.SourceCatalog(), - ) - - -class MockFilterDiaSourceCatalogTask(PipelineTask): - """A do-nothing substitute for FilterDiaSourceCatalogTask. - """ - ConfigClass = FilterDiaSourceCatalogConfig - _DefaultName = "notFilterDiaSourceCatalog" - - def run(self, diaSourceCat, diffImVisitInfo): - """Produce filtering outputs with no processing. - - Parameters - ---------- - diaSourceCat : `lsst.afw.table.SourceCatalog` - Catalog of sources measured on the difference image. - diffImVisitInfo: `lsst.afw.image.VisitInfo` - VisitInfo for the difference image corresponding to diaSourceCat. - - Returns - ------- - results : `lsst.pipe.base.Struct` - Results struct with components. - - ``filteredDiaSourceCat`` : `lsst.afw.table.SourceCatalog` - The catalog of filtered sources. - ``rejectedDiaSources`` : `lsst.afw.table.SourceCatalog` - The catalog of rejected sky sources. - ``longTrailedDiaSources`` : `astropy.table.Table` - DiaSources which have trail lengths greater than - max_trail_length*exposure_time. - """ - # TODO Add docstrings for diffIm - return Struct(filteredDiaSourceCat=afwTable.SourceCatalog(), - rejectedDiaSources=afwTable.SourceCatalog(), - longTrailedSources=afwTable.SourceCatalog().asAstropy(), - ) - - -class MockSpatiallySampledMetricsTask(PipelineTask): - """A do-nothing substitute for SpatiallySampledMetricsTask. - """ - ConfigClass = SpatiallySampledMetricsConfig - _DefaultName = "notSpatiallySampledMetricsTask" - - def run(self, science, matchedTemplate, template, difference, diaSources, psfMatchingKernel): - """Produce spatially sampled metrics - - Parameters - ---------- - science : `lsst.afw.image.ExposureF` - Science exposure that the template was subtracted from. - matchedTemplate : `lsst.afw.image.ExposureF` - Warped and PSF-matched template that was used produce the - difference image. - template : `lsst.afw.image.ExposureF` - Warped and non PSF-matched template that was used to produce - the difference image. - difference : `lsst.afw.image.ExposureF` - Result of subtracting template from the science image. - diaSources : `lsst.afw.table.SourceCatalog` - The catalog of detected sources. - psfMatchingKernel : `~lsst.afw.math.LinearCombinationKernel` - The PSF matching kernel of the subtraction to evaluate. - - Returns - ------- - results : `lsst.pipe.base.Struct` - Results struct with components. - """ - - return Struct(spatiallySampledMetrics=astropy.table.Table()) - - -class MockRBTransiNetTask(PipelineTask): - """A do-nothing substitute for RBTransiNetTask. - """ - _DefaultName = "notRbTransiNet" - ConfigClass = RBTransiNetConfig - - def run(self, template, science, difference, diaSources, pretrainedModel=None): - return Struct(classifications=afwTable.BaseCatalog(afwTable.Schema())) - - -class MockTransformDiaSourceCatalogTask(PipelineTask): - """A do-nothing substitute for TransformDiaSourceCatalogTask. - """ - ConfigClass = TransformDiaSourceCatalogConfig - _DefaultName = "notTransformDiaSourceCatalog" - - def __init__(self, initInputs, **kwargs): - super().__init__(**kwargs) - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - inputs["band"] = butlerQC.quantum.dataId["band"] - - outputs = self.run(**inputs) - - butlerQC.put(outputs, outputRefs) - - def run(self, diaSourceCat, diffIm, band, reliability=None): - """Produce transformation outputs with no processing. - - Parameters - ---------- - diaSourceCat : `lsst.afw.table.SourceCatalog` - The catalog to transform. - diffIm : `lsst.afw.image.Exposure` - An image, to provide supplementary information. - reliability : `lsst.afw.table.SourceCatalog`, optional - Reliability (e.g. real/bogus) scores, row-matched to - ``diaSourceCat``. - - Returns - ------- - results : `lsst.pipe.base.Struct` - Results struct with components: - - ``diaSourceTable`` - Catalog of DiaSources (`pandas.DataFrame`). - """ - return Struct(diaSourceTable=pandas.DataFrame(), - ) - - -class MockDiaPipelineConfig(DiaPipelineConfig): - - def setDefaults(self): - super().setDefaults() - # Avoid delegating to lsst.obs.base.Instrument specialization for the - # data ID packing algorithm to use, since test code often does not use a - # real Instrument in its data IDs. - self.idGenerator.packer.name = "observation" - - -class MockDiaPipelineTask(PipelineTask): - """A do-nothing substitute for DiaPipelineTask. - """ - ConfigClass = MockDiaPipelineConfig - _DefaultName = "notDiaPipe" - - def runQuantum(self, butlerQC, inputRefs, outputRefs): - inputs = butlerQC.get(inputRefs) - inputs["idGenerator"] = self.config.idGenerator.apply(butlerQC.quantum.dataId) - inputs["band"] = butlerQC.quantum.dataId["band"] - if not self.config.doSolarSystemAssociation: - inputs["solarSystemObjectTable"] = None - - outputs = self.run(**inputs) - - butlerQC.put(outputs, outputRefs) - - def run(self, - diaSourceTable, - solarSystemObjectTable, - diffIm, - exposure, - template, - preloadedDiaObjects, - preloadedDiaSources, - preloadedDiaForcedSources, - band, - idGenerator): - """Produce DiaSource and DiaObject outputs with no processing. - - Parameters - ---------- - diaSourceTable : `pandas.DataFrame` - Newly detected DiaSources. - solarSystemObjectTable : `pandas.DataFrame` - Expected solar system objects in the field of view. - diffIm : `lsst.afw.image.ExposureF` - Difference image exposure in which the sources in ``diaSourceCat`` - were detected. - exposure : `lsst.afw.image.ExposureF` - Calibrated exposure differenced with a template to create - ``diffIm``. - template : `lsst.afw.image.ExposureF` - Template exposure used to create diffIm. - preloadedDiaObjects : `pandas.DataFrame` - Previously detected DiaObjects, loaded from the APDB. - preloadedDiaSources : `pandas.DataFrame` - Previously detected DiaSources, loaded from the APDB. - preloadedDiaForcedSources : `pandas.DataFrame` - Catalog of previously detected forced DiaSources, from the APDB - band : `str` - The band in which the new DiaSources were detected. - idGenerator : `lsst.meas.base.IdGenerator` - Object that generates source IDs and random number generator seeds. - - Returns - ------- - results : `lsst.pipe.base.Struct` - Results struct with components: - - ``apdbMarker`` - Marker dataset to store in the Butler indicating that this - ccdVisit has completed successfully (`lsst.dax.apdb.ApdbConfig`). - ``associatedDiaSources`` - Catalog of newly associated DiaSources (`pandas.DataFrame`). - """ - return Struct(apdbMarker=self.config.apdb.value, - associatedDiaSources=pandas.DataFrame(), - diaForcedSources=pandas.DataFrame(), - diaObjects=pandas.DataFrame(),) diff --git a/tests/MockApPipe.yaml b/tests/MockApPipe.yaml deleted file mode 100644 index 54f34d39..00000000 --- a/tests/MockApPipe.yaml +++ /dev/null @@ -1,99 +0,0 @@ -description: Mock Alert Production pipeline. Use only for testing! - -parameters: - # only templates in ap_verify_testdata - coaddName: goodSeeing - # only refcat in ap_verify_testdata - refcat: gaia - apdb_config: dummy_path.yaml -tasks: - loadDiaCatalogs: - class: lsst.ap.verify.testPipeline.MockLoadDiaCatalogsTask - config: - apdb_config_url: parameters.apdb_config - isr: - class: lsst.ap.verify.testPipeline.MockIsrTask - config: - # ap_verify_testdata lacks many auxiliary inputs - doDark: False - doDefect: False - characterizeImage: lsst.ap.verify.testPipeline.MockCharacterizeImageTask - calibrate: - class: lsst.ap.verify.testPipeline.MockCalibrateTask - config: - connections.astromRefCat: parameters.refcat - connections.photoRefCat: parameters.refcat - # ap_verify_testdata has bad refcats - doAstrometry: False - doPhotoCal: False - retrieveTemplate: - class: lsst.ap.verify.testPipeline.MockGetTemplateTask - config: - connections.coaddName: parameters.coaddName - subtractImages: - class: lsst.ap.verify.testPipeline.MockAlardLuptonSubtractTask - config: - connections.coaddName: parameters.coaddName - doApplyExternalCalibrations: False - detectAndMeasure: - class: lsst.ap.verify.testPipeline.MockDetectAndMeasureTask - config: - connections.coaddName: parameters.coaddName - doSkySources: True - filterDiaSrcCat: - class: lsst.ap.verify.testPipeline.MockFilterDiaSourceCatalogTask - config: - doRemoveSkySources: True - connections.coaddName: parameters.coaddName - rbClassify: - class: lsst.ap.verify.testPipeline.MockRBTransiNetTask - config: - modelPackageStorageMode: butler - connections.coaddName: parameters.coaddName - transformDiaSrcCat: - class: lsst.ap.verify.testPipeline.MockTransformDiaSourceCatalogTask - config: - doRemoveSkySources: True - connections.coaddName: parameters.coaddName - getRegionTimeFromVisit: - # class: lsst.ap.verify.testPipeline.MockGetRegionTimeFromVisitTask - class: lsst.pipe.tasks.getRegionTimeFromVisit.GetRegionTimeFromVisitTask - config: - connections.coaddName: parameters.coaddName - diaPipe: - class: lsst.ap.verify.testPipeline.MockDiaPipelineTask - config: - doWriteAssociatedSources: True - doConfigureApdb: False - apdb_config_url: parameters.apdb_config - connections.coaddName: parameters.coaddName -contracts: - # Inputs and outputs must match - # Use of ConnectionsClass for templated fields is a workaround for DM-30210 - - retrieveTemplate.connections.ConnectionsClass(config=retrieveTemplate).template.name == - subtractImages.connections.ConnectionsClass(config=subtractImages).template.name - - subtractImages.connections.ConnectionsClass(config=subtractImages).difference.name == - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).difference.name - - subtractImages.connections.ConnectionsClass(config=subtractImages).science.name == - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).science.name - - subtractImages.connections.ConnectionsClass(config=subtractImages).template.name == - diaPipe.connections.ConnectionsClass(config=diaPipe).template.name - - subtractImages.connections.ConnectionsClass(config=subtractImages).science.name == - diaPipe.connections.ConnectionsClass(config=diaPipe).exposure.name - - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).subtractedMeasuredExposure.name == - rbClassify.connections.ConnectionsClass(config=rbClassify).difference.name - - filterDiaSrcCat.connections.ConnectionsClass(config=filterDiaSrcCat).filteredDiaSourceCat.name == - rbClassify.connections.ConnectionsClass(config=rbClassify).diaSources.name - - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).subtractedMeasuredExposure.name == - transformDiaSrcCat.connections.ConnectionsClass(config=transformDiaSrcCat).diffIm.name - - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).diaSources.name == - filterDiaSrcCat.connections.ConnectionsClass(config=filterDiaSrcCat).diaSourceCat.name - - filterDiaSrcCat.connections.ConnectionsClass(config=filterDiaSrcCat).filteredDiaSourceCat.name == - transformDiaSrcCat.connections.ConnectionsClass(config=transformDiaSrcCat).diaSourceCat.name - - detectAndMeasure.connections.ConnectionsClass(config=detectAndMeasure).subtractedMeasuredExposure.name == - diaPipe.connections.ConnectionsClass(config=diaPipe).diffIm.name - - (not transformDiaSrcCat.doIncludeReliability) or - (rbClassify.connections.ConnectionsClass(config=rbClassify).classifications.name == - transformDiaSrcCat.connections.ConnectionsClass(config=transformDiaSrcCat).reliability.name) - - transformDiaSrcCat.connections.ConnectionsClass(config=transformDiaSrcCat).diaSourceTable.name == - diaPipe.connections.ConnectionsClass(config=diaPipe).diaSourceTable.name diff --git a/tests/test_testPipeline.py b/tests/test_testPipeline.py deleted file mode 100644 index 133d9911..00000000 --- a/tests/test_testPipeline.py +++ /dev/null @@ -1,423 +0,0 @@ -# -# This file is part of ap_verify. -# -# Developed for the LSST Data Management System. -# This product includes software developed by the LSST Project -# (http://www.lsst.org). -# See the COPYRIGHT file at the top-level directory of this distribution -# for details of code ownership. -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see . -# - -import shutil -import tempfile -import unittest - -import pandas - -import lsst.utils.tests -import lsst.geom -import lsst.afw.image as afwImage -import lsst.afw.math as afwMath -import lsst.afw.table as afwTable -import lsst.skymap -from lsst.daf.butler import Timespan -import lsst.daf.butler.tests as butlerTests -from lsst.meas.base import IdGenerator -import lsst.pipe.base.testUtils as pipelineTests -from lsst.pipe.base.utils import RegionTimeInfo -from lsst.ap.verify.testPipeline import MockIsrTask, MockCharacterizeImageTask, \ - MockCalibrateTask, MockGetTemplateTask, \ - MockAlardLuptonSubtractTask, MockDetectAndMeasureTask, MockTransformDiaSourceCatalogTask, \ - MockRBTransiNetTask, MockDiaPipelineTask, MockFilterDiaSourceCatalogTask, \ - MockSpatiallySampledMetricsTask, MockLoadDiaCatalogsTask - - -class MockTaskTestSuite(unittest.TestCase): - """Test that mock tasks have the correct inputs and outputs for the task - they are replacing. - - These tests assume that the mock tasks use real config and connection - classes, and therefore out-of-date mocks won't match their connections. - """ - - @classmethod - def setUpClass(cls): - super().setUpClass() - - repoDir = tempfile.mkdtemp() - cls.addClassCleanup(shutil.rmtree, repoDir, ignore_errors=True) - cls.repo = butlerTests.makeTestRepo(repoDir) - - INSTRUMENT = "DummyCam" - VISIT = 42 - GROUP = '42' - CCD = 101 - HTM = 42 - SKYMAP = "TreasureMap" - TRACT = 28 - PATCH = 4 - BAND = 'k' - PHYSICAL = 'k2022' - SUB_FILTER = 9 - # Mock instrument by hand, because some tasks care about parameters - instrumentRecord = cls.repo.dimensions["instrument"].RecordClass( - name=INSTRUMENT, visit_max=256, exposure_max=256, detector_max=128, - class_name="lsst.obs.base.instrument_tests.DummyCam", - ) - cls.repo.registry.syncDimensionData("instrument", instrumentRecord) - butlerTests.addDataIdValue(cls.repo, "physical_filter", PHYSICAL, band=BAND) - butlerTests.addDataIdValue(cls.repo, "subfilter", SUB_FILTER) - butlerTests.addDataIdValue(cls.repo, "exposure", VISIT) - butlerTests.addDataIdValue(cls.repo, "visit", VISIT) - butlerTests.addDataIdValue(cls.repo, "group", GROUP) - butlerTests.addDataIdValue(cls.repo, "detector", CCD) - butlerTests.addDataIdValue(cls.repo, "skymap", SKYMAP) - butlerTests.addDataIdValue(cls.repo, "tract", TRACT) - butlerTests.addDataIdValue(cls.repo, "patch", PATCH) - - cls.emptyId = cls.repo.registry.expandDataId({}) - cls.exposureId = cls.repo.registry.expandDataId( - {"instrument": INSTRUMENT, "exposure": VISIT, "detector": CCD}) - cls.visitId = cls.repo.registry.expandDataId( - {"instrument": INSTRUMENT, "visit": VISIT, "detector": CCD}) - cls.groupId = cls.repo.registry.expandDataId( - {"instrument": INSTRUMENT, "group": GROUP, "detector": CCD}) - cls.visitOnlyId = cls.repo.registry.expandDataId( - {"instrument": INSTRUMENT, "visit": VISIT}) - cls.skymapId = cls.repo.registry.expandDataId({"skymap": SKYMAP}) - cls.skymapVisitId = cls.repo.registry.expandDataId( - {"instrument": INSTRUMENT, "visit": VISIT, "detector": CCD, "skymap": SKYMAP}) - cls.patchId = cls.repo.registry.expandDataId( - {"skymap": SKYMAP, "tract": TRACT, "patch": PATCH, "band": BAND}) - cls.subfilterId = cls.repo.registry.expandDataId( - {"skymap": SKYMAP, "tract": TRACT, "patch": PATCH, "band": BAND, "subfilter": SUB_FILTER}) - cls.htmId = cls.repo.registry.expandDataId({"htm7": HTM}) - - butlerTests.addDatasetType(cls.repo, "regionTimeInfo", cls.groupId.dimensions, "RegionTimeInfo") - butlerTests.addDatasetType(cls.repo, "preloaded_diaObjects", cls.groupId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "preloaded_diaSources", cls.groupId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "preloaded_diaForcedSources", cls.groupId.dimensions, - "DataFrame") - butlerTests.addDatasetType(cls.repo, "postISRCCD", cls.exposureId.dimensions, "Exposure") - butlerTests.addDatasetType(cls.repo, "icExp", cls.visitId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "icSrc", cls.visitId.dimensions, "SourceCatalog") - butlerTests.addDatasetType(cls.repo, "icExpBackground", cls.visitId.dimensions, "Background") - butlerTests.addDatasetType(cls.repo, "gaia_dr3_20230707", cls.htmId.dimensions, "SimpleCatalog") - butlerTests.addDatasetType(cls.repo, "ps1_pv3_3pi_20170110", cls.htmId.dimensions, "SimpleCatalog") - butlerTests.addDatasetType(cls.repo, "calexp", cls.visitId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "src", cls.visitId.dimensions, "SourceCatalog") - butlerTests.addDatasetType(cls.repo, "calexpBackground", cls.visitId.dimensions, "Background") - butlerTests.addDatasetType(cls.repo, "srcMatch", cls.visitId.dimensions, "Catalog") - butlerTests.addDatasetType(cls.repo, "srcMatchFull", cls.visitId.dimensions, "Catalog") - butlerTests.addDatasetType(cls.repo, lsst.skymap.BaseSkyMap.SKYMAP_DATASET_TYPE_NAME, - cls.skymapId.dimensions, "SkyMap") - butlerTests.addDatasetType(cls.repo, "goodSeeingCoadd", cls.patchId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "deepDiff_differenceExp", cls.visitId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "deepDiff_differenceTempExp", cls.visitId.dimensions, - "ExposureF") - butlerTests.addDatasetType(cls.repo, "deepDiff_templateExp", cls.visitId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "goodSeeingDiff_templateExp", cls.visitId.dimensions, - "ExposureF") - butlerTests.addDatasetType(cls.repo, "deepDiff_psfMatchKernel", cls.visitId.dimensions, - "MatchingKernel") - butlerTests.addDatasetType(cls.repo, "deepDiff_matchedExp", cls.visitId.dimensions, "ExposureF") - butlerTests.addDatasetType(cls.repo, "deepDiff_diaSrc", cls.visitId.dimensions, "SourceCatalog") - butlerTests.addDatasetType(cls.repo, "deepDiff_diaSrcTable", cls.visitId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "deepDiff_spatiallySampledMetrics", cls.visitId.dimensions, - "ArrowAstropy") - butlerTests.addDatasetType(cls.repo, "deepDiff_candidateDiaSrc", cls.visitId.dimensions, - "SourceCatalog") - butlerTests.addDatasetType(cls.repo, "visitSsObjects", cls.visitOnlyId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "apdb_marker", cls.visitId.dimensions, "Config") - butlerTests.addDatasetType(cls.repo, "deepDiff_assocDiaSrc", cls.visitId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "deepDiff_longTrailedSrc", cls.visitId.dimensions, - "ArrowAstropy") - butlerTests.addDatasetType(cls.repo, "deepRealBogusSources", cls.visitId.dimensions, "Catalog") - butlerTests.addDatasetType(cls.repo, "deepDiff_diaForcedSrc", cls.visitId.dimensions, "DataFrame") - butlerTests.addDatasetType(cls.repo, "deepDiff_diaObject", cls.visitId.dimensions, "DataFrame") - - def setUp(self): - super().setUp() - self.butler = butlerTests.makeTestCollection(self.repo, uniqueId=self.id()) - - def testMockLoadDiaCatalogsTask(self): - config = MockLoadDiaCatalogsTask.ConfigClass() - config.apdb_config_url = "testing_only" - task = MockLoadDiaCatalogsTask(config=config) - pipelineTests.assertValidInitOutput(task) - region = lsst.sphgeom.Circle() - timespan = Timespan.makeEmpty() - result = task.run(RegionTimeInfo(region=region, timespan=timespan)) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(RegionTimeInfo(region=region, timespan=timespan), "regionTimeInfo", self.groupId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.groupId, - {"regionTime": self.groupId, - "diaObjects": self.groupId, - "diaSources": self.groupId, - "diaForcedSources": self.groupId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockIsr(self): - # Testing MockIsrTask is tricky because the real ISR has an unstable - # interface with dozens of potential inputs, too many to pass through - # runTestQuantum. I don't see a good way to test the inputs; - # fortunately, this is unlikely to matter for the overall goal of - # testing ap_verify's interaction with the AP pipeline. - task = MockIsrTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(afwImage.ExposureF()) - pipelineTests.assertValidOutput(task, result) - # Skip runTestQuantum - - def testMockCharacterizeImageTask(self): - task = MockCharacterizeImageTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(afwImage.ExposureF()) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "postISRCCD", self.exposureId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"exposure": self.exposureId, - "characterized": self.visitId, - "sourceCat": self.visitId, - "backgroundModel": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockCalibrateTask(self): - task = MockCalibrateTask() - pipelineTests.assertValidInitOutput(task) - # Even the real CalibrateTask won't pass assertValidOutput, because for - # some reason the outputs are injected in runQuantum rather than run. - - self.butler.put(afwImage.ExposureF(), "icExp", self.visitId) - self.butler.put(afwMath.BackgroundList(), "icExpBackground", self.visitId) - self.butler.put(afwTable.SourceCatalog(), "icSrc", self.visitId) - self.butler.put(afwTable.SimpleCatalog(), "gaia_dr3_20230707", self.htmId) - self.butler.put(afwTable.SimpleCatalog(), "ps1_pv3_3pi_20170110", self.htmId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"exposure": self.visitId, - "background": self.visitId, - "icSourceCat": self.visitId, - "astromRefCat": [self.htmId], - "photoRefCat": [self.htmId], - "outputExposure": self.visitId, - "outputCat": self.visitId, - "outputBackground": self.visitId, - "matches": self.visitId, - "matchesDenormalized": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockGetTemplateTask(self): - task = MockGetTemplateTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(coaddExposures=[afwImage.ExposureF()], - bbox=lsst.geom.Box2I(), - wcs=None, # Should not be allowed, but too hard to fake a SkyWcs - dataIds=[], - ) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - skymap = lsst.skymap.DiscreteSkyMap(lsst.skymap.DiscreteSkyMapConfig()) - self.butler.put(skymap, lsst.skymap.BaseSkyMap.SKYMAP_DATASET_TYPE_NAME, self.skymapId) - self.butler.put(afwImage.ExposureF(), "goodSeeingCoadd", self.patchId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.skymapVisitId, - {"bbox": self.visitId, - "wcs": self.visitId, - "skyMap": self.skymapId, - "coaddExposures": [self.patchId], - "template": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockAlardLuptonSubtractTask(self): - task = MockAlardLuptonSubtractTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(afwImage.ExposureF(), afwImage.ExposureF(), afwTable.SourceCatalog()) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "deepDiff_templateExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - self.butler.put(afwTable.SourceCatalog(), "src", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"template": self.visitId, - "science": self.visitId, - "sources": self.visitId, - "difference": self.visitId, - "matchedTemplate": self.visitId, - "psfMatchingKernel": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockDetectAndMeasureTask(self): - task = MockDetectAndMeasureTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(science=afwImage.ExposureF(), - matchedTemplate=afwImage.ExposureF(), - difference=afwImage.ExposureF(), - ) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_matchedExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_differenceTempExp", self.visitId) - self.butler.put(afwTable.SourceCatalog(), "src", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"science": self.visitId, - "matchedTemplate": self.visitId, - "difference": self.visitId, - "diaSources": self.visitId, - "subtractedMeasuredExposure": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockFilterDiaSourceCatalogTask(self): - visitInfo = afwImage.VisitInfo() - task = MockFilterDiaSourceCatalogTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(afwTable.SourceCatalog(), visitInfo) - pipelineTests.assertValidOutput(task, result) - - def testMockSpatiallySampledMetricsTask(self): - task = MockSpatiallySampledMetricsTask() - result = task.run( - afwImage.ExposureF(), - afwImage.ExposureF(), - afwImage.ExposureF(), - afwImage.ExposureF(), - afwTable.SourceCatalog(), - afwMath.LinearCombinationKernel(), - ) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_matchedExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_templateExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_differenceExp", self.visitId) - self.butler.put(afwTable.SourceCatalog(), "deepDiff_candidateDiaSrc", self.visitId) - self.butler.put(afwMath.LinearCombinationKernel(), "deepDiff_psfMatchKernel", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"science": self.visitId, - "matchedTemplate": self.visitId, - "template": self.visitId, - "difference": self.visitId, - "diaSources": self.visitId, - "psfMatchingKernel": self.visitId, - "spatiallySampledMetrics": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockRBTransiNetTask(self): - task = MockRBTransiNetTask() - pipelineTests.assertValidInitOutput(task) - result = task.run(template=afwImage.ExposureF(), - science=afwImage.ExposureF(), - difference=afwImage.ExposureF(), - diaSources=afwTable.SourceCatalog(), - ) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_differenceExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_templateExp", self.visitId) - self.butler.put(afwTable.SourceCatalog(), "deepDiff_candidateDiaSrc", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"template": self.visitId, - "science": self.visitId, - "difference": self.visitId, - "diaSources": self.visitId, - "pretrainedModel": self.emptyId, - "classifications": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockTransformDiaSourceCatalogTask(self): - task = MockTransformDiaSourceCatalogTask(initInputs=afwTable.SourceCatalog()) - pipelineTests.assertValidInitOutput(task) - result = task.run(afwTable.SourceCatalog(), afwImage.ExposureF(), 'k') - pipelineTests.assertValidOutput(task, result) - - self.butler.put(afwTable.SourceCatalog(), "deepDiff_candidateDiaSrc", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_differenceExp", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"diaSourceCat": self.visitId, - "diffIm": self.visitId, - "diaSourceTable": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - def testMockDiaPipelineTask(self): - config = MockDiaPipelineTask.ConfigClass() - config.doConfigureApdb = False - config.apdb_config_url = "testing_only" - task = MockDiaPipelineTask(config=config) - pipelineTests.assertValidInitOutput(task) - result = task.run(pandas.DataFrame(), pandas.DataFrame(), afwImage.ExposureF(), - afwImage.ExposureF(), afwImage.ExposureF(), - pandas.DataFrame(), pandas.DataFrame(), pandas.DataFrame(), - 'k', IdGenerator()) - pipelineTests.assertValidOutput(task, result) - - self.butler.put(pandas.DataFrame(), "preloaded_diaObjects", self.groupId) - self.butler.put(pandas.DataFrame(), "preloaded_diaSources", self.groupId) - self.butler.put(pandas.DataFrame(), "preloaded_diaForcedSources", self.groupId) - self.butler.put(pandas.DataFrame(), "deepDiff_diaSrcTable", self.visitId) - self.butler.put(pandas.DataFrame(), "visitSsObjects", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_differenceExp", self.visitId) - self.butler.put(afwImage.ExposureF(), "calexp", self.visitId) - self.butler.put(afwImage.ExposureF(), "deepDiff_templateExp", self.visitId) - quantum = pipelineTests.makeQuantum( - task, self.butler, self.visitId, - {"diaSourceTable": self.visitId, - "solarSystemObjectTable": self.visitId, - "diffIm": self.visitId, - "exposure": self.visitId, - "template": self.visitId, - "preloadedDiaObjects": self.groupId, - "preloadedDiaSources": self.groupId, - "preloadedDiaForcedSources": self.groupId, - "apdbMarker": self.visitId, - "associatedDiaSources": self.visitId, - "diaForcedSources": self.visitId, - "diaObjects": self.visitId, - }) - pipelineTests.runTestQuantum(task, self.butler, quantum, mockRun=False) - - -class MemoryTester(lsst.utils.tests.MemoryTestCase): - pass - - -def setup_module(module): - lsst.utils.tests.init() - - -if __name__ == "__main__": - lsst.utils.tests.init() - unittest.main() diff --git a/ups/ap_verify.table b/ups/ap_verify.table index 24dbda7c..692cec1e 100644 --- a/ups/ap_verify.table +++ b/ups/ap_verify.table @@ -1,13 +1,12 @@ setupRequired(utils) -setupRequired(afw) setupRequired(verify) setupRequired(ap_pipe) setupRequired(ctrl_mpexec) # For testing setupOptional(ap_verify_testdata) -setupOptional(obs_lsst) +setupOptional(obs_lsst) # NOT declared by ap_verify_testdata # For default metric configs setupRequired(ip_diffim)