-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.yaml
57 lines (42 loc) · 2.05 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# @package _global_
# specify here default configuration
# order of defaults determines the order in which configs override each other
defaults:
- _self_
- data: mnist.yaml
- model_task: mnist.yaml
- callbacks: default.yaml
- logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
- trainer: gpu.yaml # cpu, gpu, mps
- paths: default.yaml
- extras: default.yaml
- hydra: default.yaml
# experiment configs allow for version control of specific hyperparameters
# e.g. best hyperparameters for given model and datamodule
- experiment: null
# config for hyperparameter optimization
- hparams_search: null
# optional local config for machine/user specific settings
# it's optional since it doesn't need to exist and is excluded from version control
- optional local: default.yaml
# debugging config (enable through command line, e.g. `python train.py debug=default)
- debug: null
# task name, determines output directory path
task_name: "train"
# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
tags: ["dev"]
# set False to skip model training
train: True
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: True
# compile model for faster training with pytorch 2.0
compile: False
# simply provide checkpoint path to resume training
ckpt_path: null
# seed for random number generators in pytorch, numpy and python.random
seed: null
# torch matmul precision: You are using a CUDA device ('NVIDIA A100 80GB PCIe') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
torch_matmul_precision: medium # medium, high, or None