Skip to content

Latest commit

 

History

History
67 lines (52 loc) · 4.88 KB

README.md

File metadata and controls

67 lines (52 loc) · 4.88 KB

MinMax-CAM

Official implementation for the paper "MinMax-CAM: Improving Focus of CAM-Based Visualization Techniques in Multi-Label Problems", presented at 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2022).

Implementations:

Examples

The figure below illustrates the explaining regions proposed by multiple visual explaining techniques, for each one of the classified labels in each image. The techniques are, from left to right, CAM, Grad-CAM++, Score-CAM, MinMax-CAM and D-MinMax-CAM.

Comparison of CAM methods in the Pascal VOC 2012 dataset.

Summary

We list below the notebooks used to train, evaluate and observe the multiple CAM-based visualization methods studied in our work.

Training

# Dataset Name Description
1 VOC 2007 resnet101-multilabel-pascal-voc-2007 training notebook for a ResNet101 multi-label classifier over the Pascal VOC 2007 dataset
2 VOC 2007 vgg16-multilabel-pascal-voc-2007 training notebook for a VGG16-GAP multi-label classifier over the Pascal VOC 2007 dataset
3 VOC 2007 efficientnetb6-multilabel-pascal-voc-2007 training notebook for a EfficientNet-B6 multi-label classifier over the Pascal VOC 2007 dataset
4 VOC 2012 resnet101-multilabel-pascal-voc-2012 training notebook for a ResNet101 multi-label classifier over the Pascal VOC 2012 dataset
5 COCO 2017 resnet101-multilabel-pascal-coco training notebook for a ResNet101 multi-label classifier over the COCO 2017 dataset
6 P:AfS resnet101-multilabel-amazon-from-space training notebook for a ResNet101 multi-label classifier over the Planet: Understanding the Amazon from Space dataset

Evaluation

# Dataset Name Description
1 VOC 2007 cam-benchmarks-voc-2007 evaluation notebook for multiple explaining methods, using the VGG16-GAP, ResNet101 and EfficientNet-B6 networks over the Pascal VOC 2007 dataset
2 VOC 2012 cam-benchmarks-voc-2012 evaluation notebook for multiple explaining methods, using the ResNet101 network over the Pascal VOC 2012 dataset
3 COCO 2017 cam-benchmarks-coco evaluation notebook for multiple explaining methods, using the ResNet101 network over the COCO 2017 dataset
4 P:AfS cam-benchmarks-amazon-from-space evaluation notebook for multiple explaining methods, using the ResNet101 network over the Planet: Understanding the Amazon from Space dataset

Analysis

# Dataset Name Description
1 VOC 2007 study-of-sigmoid-multilabel-voc-2007 analysis notebook for multiple explaining methods, using the ResNet101 network over the Pascal VOC 2007 dataset
2 VOC 2012 study-of-sigmoid-multilabel-voc-2012 analysis notebook for multiple explaining methods, using the ResNet101 network over the Pascal VOC 2012 dataset
3 P:AfS study-of-sigmoid-multilabel-amazon-from-space analysis notebook for multiple explaining methods, using the ResNet101 network over the Planet: Understanding the Amazon from Space dataset

Citation

@conference{visapp22,
author={Lucas David. and Helio Pedrini. and Zanoni Dias.},
title={MinMax-CAM: Improving Focus of CAM-based Visualization Techniques in Multi-label Problems},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP,},
year={2022},
pages={106-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010807800003124},
isbn={978-989-758-555-5},
}